798 resultados para networking meta classifiers
Resumo:
This paper proposes a new feature representation method based on the construction of a Confidence Matrix (CM). This representation consists of posterior probability values provided by several weak classifiers, each one trained and used in different sets of features from the original sample. The CM allows the final classifier to abstract itself from discovering underlying groups of features. In this work the CM is applied to isolated character image recognition, for which several set of features can be extracted from each sample. Experimentation has shown that the use of CM permits a significant improvement in accuracy in most cases, while the others remain the same. The results were obtained after experimenting with four well-known corpora, using evolved meta-classifiers with the k-Nearest Neighbor rule as a weak classifier and by applying statistical significance tests.
Resumo:
Ambient Intelligence (AmI) envisions a world where smart, electronic environments are aware and responsive to their context. People moving into these settings engage many computational devices and systems simultaneously even if they are not aware of their presence. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. The dependence on a large amount of fixed and mobile sensors embedded into the environment makes of Wireless Sensor Networks one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes, simple devices that typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. In order to handle the large amount of data generated by a WSN several multi sensor data fusion techniques have been developed. The aim of multisensor data fusion is to combine data to achieve better accuracy and inferences than could be achieved by the use of a single sensor alone. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas: Multimodal Surveillance and Activity Recognition. Novel techniques to handle data from a network of low-cost, low-power Pyroelectric InfraRed (PIR) sensors are presented. Such techniques allow the detection of the number of people moving in the environment, their direction of movement and their position. We discuss how a mesh of PIR sensors can be integrated with a video surveillance system to increase its performance in people tracking. Furthermore we embed a PIR sensor within the design of a Wireless Video Sensor Node (WVSN) to extend its lifetime. Activity recognition is a fundamental block in natural interfaces. A challenging objective is to design an activity recognition system that is able to exploit a redundant but unreliable WSN. We present our activity in building a novel activity recognition architecture for such a dynamic system. The architecture has a hierarchical structure where simple nodes performs gesture classification and a high level meta classifiers fuses a changing number of classifier outputs. We demonstrate the benefit of such architecture in terms of increased recognition performance, and fault and noise robustness. Furthermore we show how we can extend network lifetime by performing a performance-power trade-off. Smart objects can enhance user experience within smart environments. We present our work in extending the capabilities of the Smart Micrel Cube (SMCube), a smart object used as tangible interface within a tangible computing framework, through the development of a gesture recognition algorithm suitable for this limited computational power device. Finally the development of activity recognition techniques can greatly benefit from the availability of shared dataset. We report our experience in building a dataset for activity recognition. Such dataset is freely available to the scientific community for research purposes and can be used as a testbench for developing, testing and comparing different activity recognition techniques.
Resumo:
The application of support vector machine classification (SVM) to combined information from magnetic resonance imaging (MRI) and [F18]fluorodeoxyglucose positron emission tomography (FDG-PET) has been shown to improve detection and differentiation of Alzheimer's disease dementia (AD) and frontotemporal lobar degeneration. To validate this approach for the most frequent dementia syndrome AD, and to test its applicability to multicenter data, we randomly extracted FDG-PET and MRI data of 28 AD patients and 28 healthy control subjects from the database provided by the Alzheimer's Disease Neuroimaging Initiative (ADNI) and compared them to data of 21 patients with AD and 13 control subjects from our own Leipzig cohort. SVM classification using combined volume-of-interest information from FDG-PET and MRI based on comprehensive quantitative meta-analyses investigating dementia syndromes revealed a higher discrimination accuracy in comparison to single modality classification. For the ADNI dataset accuracy rates of up to 88% and for the Leipzig cohort of up to 100% were obtained. Classifiers trained on the ADNI data discriminated the Leipzig cohorts with an accuracy of 91%. In conclusion, our results suggest SVM classification based on quantitative meta-analyses of multicenter data as a valid method for individual AD diagnosis. Furthermore, combining imaging information from MRI and FDG-PET might substantially improve the accuracy of AD diagnosis.
Resumo:
In the world we are constantly performing everyday actions. Two of these actions are frequent and of great importance: classify (sort by classes) and take decision. When we encounter problems with a relatively high degree of complexity, we tend to seek other opinions, usually from people who have some knowledge or even to the extent possible, are experts in the problem domain in question in order to help us in the decision-making process. Both the classification process as the process of decision making, we are guided by consideration of the characteristics involved in the specific problem. The characterization of a set of objects is part of the decision making process in general. In Machine Learning this classification happens through a learning algorithm and the characterization is applied to databases. The classification algorithms can be employed individually or by machine committees. The choice of the best methods to be used in the construction of a committee is a very arduous task. In this work, it will be investigated meta-learning techniques in selecting the best configuration parameters of homogeneous committees for applications in various classification problems. These parameters are: the base classifier, the architecture and the size of this architecture. We investigated nine types of inductors candidates for based classifier, two methods of generation of architecture and nine medium-sized groups for architecture. Dimensionality reduction techniques have been applied to metabases looking for improvement. Five classifiers methods are investigated as meta-learners in the process of choosing the best parameters of a homogeneous committee.
Resumo:
Definition of acute renal allograft rejection (AR) markers remains clinically relevant. Features of T-cell-mediated AR are tubulointerstitial and vascular inflammation associated with excessive extracellular matrix (ECM) remodeling, regulated by metzincins, including matrix metalloproteases (MMP). Our study focused on expression of metzincins (METS), and metzincins and related genes (MARGS) in renal allograft biopsies using four independent microarray data sets. Our own cases included normal histology (N, n = 20), borderline changes (BL, n = 4), AR (n = 10) and AR + IF/TA (n = 7). MARGS enriched in all data sets were further examined on mRNA and/or protein level in additional patients. METS and MARGS differentiated AR from BL, AR + IF/TA and N in a principal component analysis. Their expression changes correlated to Banff t- and i-scores. Two AR classifiers, based on METS (including MMP7, TIMP1), or on MARGS were established in our own and validated in the three additional data sets. Thirteen MARGS were significantly enriched in AR patients of all data sets comprising MMP7, -9, TIMP1, -2, thrombospondin2 (THBS2) and fibrillin1. RT-PCR using microdissected glomeruli/tubuli confirmed MMP7, -9 and THBS2 microarray results; immunohistochemistry showed augmentation of MMP2, -9 and TIMP1 in AR. TIMP1 and THBS2 were enriched in AR patient serum. Therefore, differentially expressed METS and MARGS especially TIMP1, MMP7/-9 represent potential molecular AR markers.
Resumo:
The microarray technology provides a high-throughput technique to study gene expression. Microarrays can help us diagnose different types of cancers, understand biological processes, assess host responses to drugs and pathogens, find markers for specific diseases, and much more. Microarray experiments generate large amounts of data. Thus, effective data processing and analysis are critical for making reliable inferences from the data. ^ The first part of dissertation addresses the problem of finding an optimal set of genes (biomarkers) to classify a set of samples as diseased or normal. Three statistical gene selection methods (GS, GS-NR, and GS-PCA) were developed to identify a set of genes that best differentiate between samples. A comparative study on different classification tools was performed and the best combinations of gene selection and classifiers for multi-class cancer classification were identified. For most of the benchmarking cancer data sets, the gene selection method proposed in this dissertation, GS, outperformed other gene selection methods. The classifiers based on Random Forests, neural network ensembles, and K-nearest neighbor (KNN) showed consistently god performance. A striking commonality among these classifiers is that they all use a committee-based approach, suggesting that ensemble classification methods are superior. ^ The same biological problem may be studied at different research labs and/or performed using different lab protocols or samples. In such situations, it is important to combine results from these efforts. The second part of the dissertation addresses the problem of pooling the results from different independent experiments to obtain improved results. Four statistical pooling techniques (Fisher inverse chi-square method, Logit method. Stouffer's Z transform method, and Liptak-Stouffer weighted Z-method) were investigated in this dissertation. These pooling techniques were applied to the problem of identifying cell cycle-regulated genes in two different yeast species. As a result, improved sets of cell cycle-regulated genes were identified. The last part of dissertation explores the effectiveness of wavelet data transforms for the task of clustering. Discrete wavelet transforms, with an appropriate choice of wavelet bases, were shown to be effective in producing clusters that were biologically more meaningful. ^
Resumo:
Ecosystem engineering is increasingly recognized as a relevant ecological driver of diversity and community composition. Although engineering impacts on the biota can vary from negative to positive, and from trivial to enormous, patterns and causes of variation in the magnitude of engineering effects across ecosystems and engineer types remain largely unknown. To elucidate the above patterns, we conducted a meta-analysis of 122 studies which explored effects of animal ecosystem engineers on species richness of other organisms in the community. The analysis revealed that the overall effect of ecosystem engineers on diversity is positive and corresponds to a 25% increase in species richness, indicating that ecosystem engineering is a facilitative process globally. Engineering effects were stronger in the tropics than at higher latitudes, likely because new or modified habitats provided by engineers in the tropics may help minimize competition and predation pressures on resident species. Within aquatic environments, engineering impacts were stronger in marine ecosystems (rocky shores) than in streams. In terrestrial ecosystems, engineers displayed stronger positive effects in arid environments (e.g. deserts). Ecosystem engineers that create new habitats or microhabitats had stronger effects than those that modify habitats or cause bioturbation. Invertebrate engineers and those with lower engineering persistence (<1 year) affected species richness more than vertebrate engineers which persisted for >1 year. Invertebrate species richness was particularly responsive to engineering impacts. This study is the first attempt to build an integrative framework of engineering effects on species diversity; it highlights the importance of considering latitude, habitat, engineering functional group, taxon and persistence of their effects in future theoretical and empirical studies.
Resumo:
Chlorophenylpiperazines (CPP) are psychotropic drugs used in nightclub parties and are frequently used in a state of sleep deprivation, a condition which can potentiate the effects of psychoactive drugs. This study aimed to investigate the effects of sleep deprivation and sleep rebound (RB) on anxiety-like measures in mCPP-treated mice using the open field test. We first optimized our procedure by performing dose-effect curves and examining different pretreatment times in naïve male Swiss mice. Subsequently, a separate cohort of mice underwent paradoxical sleep deprivation (PSD) for 24 or 48h. In the last experiment, immediately after the 24h-PSD period, mice received an injection of saline or mCPP, but their general activity was quantified in the open field only after the RB period (24 or 48h). The dose of 5mgmL(-1) of mCPP was the most effective at decreasing rearing behavior, with peak effects 15min after injection. PSD decreased locomotion and rearing behaviors, thereby inhibiting a further impairment induced by mCPP. Plasma concentrations of mCPP were significantly higher in PSD 48h animals compared to the non-PSD control group. Twenty-four hours of RB combined with mCPP administration produced a slight reduction in locomotion. Our results show that mCPP was able to significantly change the behavior of naïve, PSD, and RB mice. When combined with sleep deprivation, there was a higher availability of drug in plasma levels. Taken together, our results suggest that sleep loss can enhance the behavioral effects of the potent psychoactive drug, mCPP, even after a period of rebound sleep.
Resumo:
In this work, all publicly-accessible published findings on Alicyclobacillus acidoterrestris heat resistance in fruit beverages as affected by temperature and pH were compiled. Then, study characteristics (protocols, fruit and variety, °Brix, pH, temperature, heating medium, culture medium, inactivation method, strains, etc.) were extracted from the primary studies, and some of them incorporated to a meta-analysis mixed-effects linear model based on the basic Bigelow equation describing the heat resistance parameters of this bacterium. The model estimated mean D* values (time needed for one log reduction at a temperature of 95 °C and a pH of 3.5) of Alicyclobacillus in beverages of different fruits, two different concentration types, with and without bacteriocins, and with and without clarification. The zT (temperature change needed to cause one log reduction in D-values) estimated by the meta-analysis model were compared to those ('observed' zT values) reported in the primary studies, and in all cases they were within the confidence intervals of the model. The model was capable of predicting the heat resistance parameters of Alicyclobacillus in fruit beverages beyond the types available in the meta-analytical data. It is expected that the compilation of the thermal resistance of Alicyclobacillus in fruit beverages, carried out in this study, will be of utility to food quality managers in the determination or validation of the lethality of their current heat treatment processes.
Resumo:
Lymphoma is the most common head and neck malignancy in children, and palatine tonsils asymmetry is the most frequent clinical manifestation of tonsillar lymphoma. However, several studies with children with tonsillar asymmetry found no case of lymphoma, showing that the relationship of tonsillar asymmetry with lymphoma is unclear. In this review, we aimed to identify the association between tonsillar asymmetry and tonsillar lymphoma in children by conducting systematic reviews of the literature on children with palatine tonsil lymphoma and tonsillar asymmetry. Articles comprising the paediatric age group (up to 18 years) with information concerning clinical manifestations of tonsillar lymphoma or the diagnosis of the tonsillar asymmetry were included. The main cause of asymmetry of palatine tonsils was lymphoid hyperplasia, followed by lymphoma and nonspecific benign changes. The asymmetry of tonsils was present in 73.2% of cases of lymphoma. There was an association between asymmetric palatine tonsils and lymphoma, with a likelihood ratio of 43.5 for children with asymmetry of palatine tonsils and 8938.4 for children with asymmetry of tonsils and other signs of suspicion for malignancy. We also provide recommendations on the management of suspicious cases of palatine tonsil lymphoma.
Resumo:
PURPOSE: To evaluate the sensitivity and specificity of machine learning classifiers (MLCs) for glaucoma diagnosis using Spectral Domain OCT (SD-OCT) and standard automated perimetry (SAP). METHODS: Observational cross-sectional study. Sixty two glaucoma patients and 48 healthy individuals were included. All patients underwent a complete ophthalmologic examination, achromatic standard automated perimetry (SAP) and retinal nerve fiber layer (RNFL) imaging with SD-OCT (Cirrus HD-OCT; Carl Zeiss Meditec Inc., Dublin, California). Receiver operating characteristic (ROC) curves were obtained for all SD-OCT parameters and global indices of SAP. Subsequently, the following MLCs were tested using parameters from the SD-OCT and SAP: Bagging (BAG), Naive-Bayes (NB), Multilayer Perceptron (MLP), Radial Basis Function (RBF), Random Forest (RAN), Ensemble Selection (ENS), Classification Tree (CTREE), Ada Boost M1(ADA),Support Vector Machine Linear (SVML) and Support Vector Machine Gaussian (SVMG). Areas under the receiver operating characteristic curves (aROC) obtained for isolated SAP and OCT parameters were compared with MLCs using OCT+SAP data. RESULTS: Combining OCT and SAP data, MLCs' aROCs varied from 0.777(CTREE) to 0.946 (RAN).The best OCT+SAP aROC obtained with RAN (0.946) was significantly larger the best single OCT parameter (p<0.05), but was not significantly different from the aROC obtained with the best single SAP parameter (p=0.19). CONCLUSION: Machine learning classifiers trained on OCT and SAP data can successfully discriminate between healthy and glaucomatous eyes. The combination of OCT and SAP measurements improved the diagnostic accuracy compared with OCT data alone.
Resumo:
The parasitic protozoan Leishmania (Leishmania) amazonensis alternates between mammalian and insect hosts. In the insect host, the parasites proliferate as procyclic promastigotes andthen differentiate into metacyclic infective forms. The meta 1 gene is preferentially expressed during metacyclogenesis. Meta 1 expression profile determination along parasite growth curves revealed that the meta 1 mRNA level peaked at the early stationary phase then decreased to an intermediate level. No correlation was observed between meta 1 expression and infectivity. Conversely, infectivity correlated with the increase of apoptotic cells in the late stationary phase.
Resumo:
We study the star/galaxy classification efficiency of 13 different decision tree algorithms applied to photometric objects in the Sloan Digital Sky Survey Data Release Seven (SDSS-DR7). Each algorithm is defined by a set of parameters which, when varied, produce different final classification trees. We extensively explore the parameter space of each algorithm, using the set of 884,126 SDSS objects with spectroscopic data as the training set. The efficiency of star-galaxy separation is measured using the completeness function. We find that the Functional Tree algorithm (FT) yields the best results as measured by the mean completeness in two magnitude intervals: 14 <= r <= 21 (85.2%) and r >= 19 (82.1%). We compare the performance of the tree generated with the optimal FT configuration to the classifications provided by the SDSS parametric classifier, 2DPHOT, and Ball et al. We find that our FT classifier is comparable to or better in completeness over the full magnitude range 15 <= r <= 21, with much lower contamination than all but the Ball et al. classifier. At the faintest magnitudes (r > 19), our classifier is the only one that maintains high completeness (> 80%) while simultaneously achieving low contamination (similar to 2.5%). We also examine the SDSS parametric classifier (psfMag - modelMag) to see if the dividing line between stars and galaxies can be adjusted to improve the classifier. We find that currently stars in close pairs are often misclassified as galaxies, and suggest a new cut to improve the classifier. Finally, we apply our FT classifier to separate stars from galaxies in the full set of 69,545,326 SDSS photometric objects in the magnitude range 14 <= r <= 21.
Resumo:
Background: Recent reviews have indicated that low level level laser therapy (LLLT) is ineffective in lateral elbow tendinopathy (LET) without assessing validity of treatment procedures and doses or the influence of prior steroid injections. Methods: Systematic review with meta-analysis, with primary outcome measures of pain relief and/or global improvement and subgroup analyses of methodological quality, wavelengths and treatment procedures. Results: 18 randomised placebo-controlled trials (RCTs) were identified with 13 RCTs (730 patients) meeting the criteria for meta-analysis. 12 RCTs satisfied half or more of the methodological criteria. Publication bias was detected by Egger's graphical test, which showed a negative direction of bias. Ten of the trials included patients with poor prognosis caused by failed steroid injections or other treatment failures, or long symptom duration or severe baseline pain. The weighted mean difference (WMD) for pain relief was 10.2 mm [95% CI: 3.0 to 17.5] and the RR for global improvement was 1.36 [1.16 to 1.60]. Trials which targeted acupuncture points reported negative results, as did trials with wavelengths 820, 830 and 1064 nm. In a subgroup of five trials with 904 nm lasers and one trial with 632 nm wavelength where the lateral elbow tendon insertions were directly irradiated, WMD for pain relief was 17.2 mm [95% CI: 8.5 to 25.9] and 14.0 mm [95% CI: 7.4 to 20.6] respectively, while RR for global pain improvement was only reported for 904 nm at 1.53 [95% CI: 1.28 to 1.83]. LLLT doses in this subgroup ranged between 0.5 and 7.2 Joules. Secondary outcome measures of painfree grip strength, pain pressure threshold, sick leave and follow-up data from 3 to 8 weeks after the end of treatment, showed consistently significant results in favour of the same LLLT subgroup (p < 0.02). No serious side-effects were reported. Conclusion: LLLT administered with optimal doses of 904 nm and possibly 632 nm wavelengths directly to the lateral elbow tendon insertions, seem to offer short-term pain relief and less disability in LET, both alone and in conjunction with an exercise regimen. This finding contradicts the conclusions of previous reviews which failed to assess treatment procedures, wavelengths and optimal doses.
Resumo:
Background: Although meta-analyses have shown that placebo responses are large in Major Depressive Disorder (MDD) trials; the placebo response of devices such as repetitive transcranial magnetic stimulation (rTMS) has not been systematically assessed. We proposed to assess placebo responses in two categories of MDD trials: pharmacological (antidepressant drugs) and non-pharmacological (device-rTMS) trials. Methodology/Principal Findings: We performed a systematic review and meta-analysis of the literature from April 2002 to April 2008, searching MEDLINE, Cochrane, Scielo and CRISP electronic databases and reference lists from retrieved studies and conference abstracts. We used the keywords placebo and depression and escitalopram for pharmacological studies; and transcranial magnetic stimulation and depression and sham for non-pharmacological studies. All randomized, double-blinded, placebo-controlled, parallel articles on major depressive disorder were included. Forty-one studies met our inclusion criteria-29 in the rTMS arm and 12 in the escitalopram arm. We extracted the mean and standard values of depression scores in the placebo group of each study. Then, we calculated the pooled effect size for escitalopram and rTMS arm separately, using Cohen's d as the measure of effect size. We found that placebo response are large for both escitalopram (Cohen's d-random-effects model-1.48; 95% C.I. 1.26 to 1.6) and rTMS studies (0.82; 95% C.I. 0.63 to 1). Exploratory analyses show that sham response is associated with refractoriness and with the use of rTMS as an add-on therapy, but not with age, gender and sham method utilized. Conclusions/Significance: We confirmed that placebo response in MDD is large regardless of the intervention and is associated with depression refractoriness and treatment combination (add-on rTMS studies). The magnitude of the placebo response seems to be related with study population and study design rather than the intervention itself.