959 resultados para nerve fibre layer
Resumo:
Aims: To investigate the relationship between retinal nerve fibre layer thickness and peripheral neuropathy in patients with Type 2 diabetes, particularly in those who are at higher risk of foot ulceration. Methods: Global and sectoral retinal nerve fibre layer thicknesses were measured at 3.45 mm diameter around the optic nerve head using optical coherence tomography (OCT). The level of neuropathy was assessed in 106 participants (82 with Type 2 diabetes and 24 healthy controls) using the 0–10 neuropathy disability score. Participants were stratified into four neuropathy groups: none (0–2), mild (3–5), moderate (6–8), and severe (9–10). A neuropathy disability score ≥ 6 was used to define those at higher risk of foot ulceration. Multivariable regression analysis was performed to assess the effect of neuropathy disability scores, age, disease duration and retinopathy on RNFL thickness. Results: Inferior (but not global or other sectoral) retinal nerve fibre layer thinning was associated with higher neuropathy disability scores (P = 0.03). The retinal nerve fibre layer was significantly thinner for the group with neuropathy disability scores ≥ 6 in the inferior quadrant (P < 0.005). Age, duration of disease and retinopathy levels did not significantly influence retinal nerve fibre layer thickness. Control participants did not show any significant differences in thickness measurements from the group with diabetes and no neuropathy (P > 0.24 for global and all sectors). Conclusions: Inferior quadrant retinal nerve fibre layer thinning is associated with peripheral neuropathy in patients with Type 2 diabetes, and is more pronounced in those at higher risk of foot ulceration.
Resumo:
Purpose To evaluate the association between retinal nerve fibre layer (RNFL) thickness and diabetic peripheral neuropathy in people with type 2 diabetes, and specifically those at higher risk of foot ulceration. Methods RNFL thicknesses was measured globally and in four quadrants (temporal, superior, nasal and inferior) at 3.45 mm diameter around the optic nerve head using optical coherence tomography (OCT). Severity of neuropathy was assessed using the Neuropathy Disability Score (NDS). Eighty-two participants with type 2 diabetes were stratified according to NDS scores (0-10) as: none, mild, moderate, and severe neuropathy. A control group was additionally included (n=17). Individuals with NDS≥ 6 (moderate and severe neuropathy) have been shown to be at higher risk of foot ulceration. A linear regression model was used to determine the association between RNFL and severity of neuropathy. Age, disease duration and diabetic retinopathy levels were fitted in the models. Independent t-test was employed for comparison between controls and the group without neuropathy, as well as for comparison between groups with higher and lower risk of foot ulceration. Analysis of variance was used to compare across all NDS groups. Results RNFL thickness was significantly associated with NDS in the inferior quadrant (b= -1.46, p=0.03). RNFL thicknesses globally and in superior, temporal and nasal quadrants did not show significant associations with NDS (all p>0.51). These findings were independent of the effect of age, disease duration and retinopathy. RNFL was thinner for the group with NDS ≥ 6 in all quadrants but was significant only inferiorly (p<0.005). RNFL for control participants was not significantly different from the group with diabetes and no neuropathy (superior p=0.07, global and all other quadrants: p>0.23). Mean RNFL thickness was not significantly different between the four NDS groups globally and in all quadrants (p=0.08 for inferior, P>0.14 for all other comparisons). Conclusions Retinal nerve fibre layer thinning is associated with neuropathy in people with type 2 diabetes. This relationship is strongest in the inferior retina and in individuals at higher risk of foot ulceration.
Resumo:
BACKGROUND/AIM: To compare the ability of confocal scanning laser tomography (CSLT), scanning laser polarimetry (SLP) and optical coherence tomography (OCT) in recognising localised retinal nerve fibre layer (RNFL) defects. METHODS: 51 eyes from 43 patients with glaucoma were identified by two observers as having RNFL defects visible on optic disc photographs. 51 eyes of 32 normal subjects were used as controls. Three masked observers evaluated CSLT, SLP and OCT images to determine subjectively the presence of localised RNFL defects. RESULTS: Interobserver agreement was highest with OCT, followed by SLP and CSLT (mean kappa: 0.83, 0.69 and 0.64, respectively). RNFL defects were identified in 58.8% of CSLT, 66.7% of SLP and 54.9% of OCT (p = 0.02 between SLP and OCT) by at least two observers. In the controls, 94.1% of CSLT, 84.3% of SLP and 94.1% of OCT scans, respectively, were rated as normal (p = 0.02 between CSLT and SLP, and SLP and OCT). CONCLUSION: Approximately 20-40% of localised RNFL defects identified by colour optic disc photographs are not detected by CSLT, SPL or OCT. SLP showed a higher number of false-positive results than the other techniques, but also had a higher proportion of correctly identified RNFL defects in the glaucoma population.
Resumo:
Patients with idiopathic small fibre neuropathy (ISFN) have been shown to have significant intraepidermal nerve fibre loss and an increased prevalence of impaired glucose tolerance (IGT). It has been suggested that the dysglycemia of IGT and additional metabolic risk factors may contribute to small nerve fibre damage in these patients. Twenty-five patients with ISFN and 12 aged-matched control subjects underwent a detailed evaluation of neuropathic symptoms, neurological deficits (Neuropathy deficit score (NDS); Nerve Conduction Studies (NCS); Quantitative Sensory Testing (QST) and Corneal Confocal Microscopy (CCM)) to quantify small nerve fibre pathology. Eight (32%) patients had IGT. Whilst all patients with ISFN had significant neuropathic symptoms, NDS, NCS and QST except for warm thresholds were normal. Corneal sensitivity was reduced and CCM demonstrated a significant reduction in corneal nerve fibre density (NFD) (Pb0.0001), nerve branch density (NBD) (Pb0.0001), nerve fibre length (NFL) (Pb0.0001) and an increase in nerve fibre tortuosity (NFT) (Pb0.0001). However these parameters did not differ between ISFN patients with and without IGT, nor did they correlate with BMI, lipids and blood pressure. Corneal confocal microscopy provides a sensitive non-invasive means to detect small nerve fibre damage in patients with ISFN and metabolic abnormalities do not relate to nerve damage.
Resumo:
AIMS: Recent studies on corneal markers have advocated corneal nerve fibre length as the most important measure of diabetic peripheral neuropathy. The aim of this study was to determine if standardizing corneal nerve fibre length for tortuosity increases its association with other measures of diabetic peripheral neuropathy. METHODS: Two hundred and thirty-one individuals with diabetes with either predominantly mild or absent neuropathic changes and 61 control subjects underwent evaluation of diabetic neuropathy symptom score, neuropathy disability score, testing with 10-g monofilament, quantitative sensory testing (warm, cold, vibration detection) and nerve conduction studies. Corneal nerve fibre length and corneal nerve fibre tortuosity were measured using corneal confocal microscopy. A tortuosity-standardised corneal nerve fibre length variable was generated by dividing corneal nerve fibre length by corneal nerve fibre tortuosity. Differences in corneal nerve morphology between individuals with and without diabetic peripheral neuropathy and control subjects were determined and associations were estimated between corneal morphology and established tests of, and risk factors for, diabetic peripheral neuropathy. RESULTS: The tortuosity-standardised corneal nerve fibre length variable was better than corneal nerve fibre length in demonstrating differences between individuals with diabetes, with and without neuropathy (tortuosity-standardised corneal nerve fibre length variable: 70.5 ± 27.3 vs. 84.9 ± 28.7, P < 0.001, receiver operating characteristic area under the curve = 0.67; corneal nerve fibre length: 15.9 ± 6.9 vs. 18.4 ± 6.2 mm/mm(2) , P = 0.004, receiver operating characteristic area under the curve = 0.64). Furthermore, the tortuosity-standardised corneal nerve fibre length variable demonstrated a significant difference between the control subjects and individuals with diabetes, without neuropathy, while corneal nerve fibre length did not (tortuosity-standardised corneal nerve fibre length variable: 94.3 ± 27.1 vs. 84.9 ± 28.7, P = 0.028; corneal nerve fibre length: 20.1 ± 6.3 vs. 18.4 ± 6.2 mm/mm(2) , P = 0.084). Correlations between corneal nerve fibre length and established measures of neuropathy and risk factors for neuropathy were higher when a correction was made for the nerve tortuosity. CONCLUSIONS: Standardizing corneal nerve fibre length for tortuosity enhances the ability to differentiate individuals with diabetes, with and without neuropathy.
Resumo:
Purpose: The authors estimated the retinal nerve fiber layer height (RNFLH) measurements in patients with glaucoma compared with those in age-matched healthy subjects as obtained by the laser scanning tomography and assessed the relationship between RNFLH measurements and optic and visual field status. Methods: Parameters of optic nerve head topography and RNFLH were evaluated in 125 eyes of 21 healthy subjects and 104 patients with glaucoma using the Heidelberg Retina Tomograph ([HRT] Heidelberg Engineering GmbH, Heidelberg, Germany) for the entire disc area and for the superior 70°(50°temporal and 20°nasal to the vertical midline) and inferior 70°sectors of the optic disc. The mean deviation of the visual field, as determined by the Humphrey program 24-2 (Humphrey Instruments, Inc., San Leonardo, CA, U.S.A) was calculated in the entire field and in the superior and inferior Bjerrum area. Result: Retinal nerve fiber layer height parameters (mean RNFLH and RNFL cross-sectional area) were decreased significantly in patients with glaucoma compared with healthy individuals. Retinal nerve fiber layer height parameters was correlated strongly with rim volume, rim area, and cup/disc area ratio. Of the various topography measures, retinal nerve fiber layer (RNFL) parameters and cup/disc area ratio showed the strongest correlation with visual field mean deviation in patients with glaucoma. Conclusion: Retinal nerve fiber layer height measures were reduced substantially in patients with glaucoma compared with age-matched healthy subjects. Retinal nerve fiber layer height was correlated strongly with topographic optic disc parameters and visual field changes in patients with glaucoma.
Resumo:
Objective: The objective of this study is to conduct a description of the features of optic neuropathy associated with Human Immunodeficiency Virus in relation to their possible incidence within our population, regarding that there is no data in our population in terms of frequency of this pathology (1,2). Methodology: Descriptive cross-sectional study of a clinical series of patients infected with human immunodeficiency virus, but AIDS, and the thickness of optic nerve´s layer of fibers studied with OCT technology (optical coherence tomography), patients were cited once captured. OCT was performed by the same observer, by taking 3 shots and picking the one with better reliability. Patients were given personally to the Ophthalmologic Foundation of Santander to conduct the review called OCT (optical coherence tomography). Results: In terms of viral load variable, we found a clear correlation in which validates the hypothesis that lower viral load means a thicker layer of fibers finding statistically significant differences for the 6 hours in right eye and 12 and 6 hours in left eye. Comparison between the known nomogram of fiber layer thickness for the population of Bucaramanga, Santander and thickness found in our sample, we note a clear decrease in the upper and lower quadrants, specifically in 7 hours and 11 hours, being more important in 7 hours, showing statistically significant differences. Conclusions: The pattern of thinning of the nerve fiber layer in HIV positive patients without AIDS, and antiretroviral treatment type HAART, showed a statistically significant thinning targeted at 7 hours and 11 hours, being higher in first. Viral load figures have a direct relation with loss fiber layer, showing a statistically significant difference for the 6 and 12 hours.
Resumo:
To describe retinal nerve fiber layer changes in late-stage diffuse unilateral subacute neuroretinitis eyes and compare these results with healthy eyes observed through nerve fiber analyzer (GDx®). Methods: This is a retrospective case-control study in which 49 eyes in late-stage diffuse unilateral subacute neuroretinitis were examined from May/97 to December/ 01. First, eyes with diffuse unilateral subacute neuroretinitis and healthy contralateral eyes (Control Group I) were statistically matched. Subsequently, eyes with diffuse unilateral subacute neuroretinitis were compared with eyes of healthy patients (Control Group II). Results: Eyes from Control Groups I and II had higher relative frequency of “within normal limits” status. Eyes from the diffuse unilateral subacute neuroretinitis (DUSN) Group had higher frequency of “outside normal limits” and “borderline” status. Control Groups I and II had absolute values different from the DUSN Group regarding all parameters (p<0.05), except for Symmetry in Control Groups I and II, Average thickness and Superior Integral in control group II. Conclusion: Patients with late-stage diffuse unilateral subacute neuroretinitis presented presumed decrease in nerve fiber layer thickness shown by GDx®. Retinal zones with larger vascular support and larger amount of nerve fibers presented higher decrease in the delay of the reflected light measured by the nerve fiber analyzer
Resumo:
Purpose: To evaluate the retinal nerve fiber layer measurements with time-domain (TD) and spectral-domain (SD) optical coherence tomography (OCT), and to test the diagnostic ability of both technologies in glaucomatous patients with asymmetric visual hemifield loss. Methods: 36 patients with primary open-angle glaucoma with visual field loss in one hemifield (affected) and absent loss in the other (non-affected), and 36 age-matched healthy controls had the study eye imaged with Stratus-OCT (Carl Zeiss Meditec Inc., Dublin, California, USA) and 3 D OCT-1000 (Topcon, Tokyo, Japan). Peripapillary retinal nerve fiber layer measurements and normative classification were recorded. Total deviation values were averaged in each hemifield (hemifield mean deviation) for each subject. Visual field and retinal nerve fiber layer "asymmetry indexes" were calculated as the ratio between affected versus non-affected hemifields and corresponding hemiretinas. Results: Retinal nerve fiber layer measurements in non-affected hemifields (mean [SD] 87.0 [17.1] mu m and 84.3 [20.2] mu m, for TD and SD-OCT, respectively) were thinner than in controls (119.0 [12.2] mu m and 117.0 [17.7] mu m, P<0.001). The optical coherence tomography normative database classified 42% and 67% of hemiretinas corresponding to non-affected hemifields as abnormal in TD and SD-OCT, respectively (P=0.01). Retinal nerve fiber layer measurements were consistently thicker with TD compared to SD-OCT. Retinal nerve fiber layer thickness asymmetry index was similar in TD (0.76 [0.17]) and SD-OCT (0.79 [0.12]) and significantly greater than the visual field asymmetry index (0.36 [0.20], P<0.001). Conclusions: Normal hemifields of glaucoma patients had thinner retinal nerve fiber layer than healthy eyes, as measured by TD and SD-OCT. Retinal nerve fiber layer measurements were thicker with TD than SD-OCT. SD-OCT detected abnormal retinal nerve fiber layer thickness more often than TD-OCT.
Resumo:
The aim of this work is to assess the repeatability of spectral-domain-OCT (SD-OCT) retinal nerve fiber layer thickness (RNFL) thickness measurements in a non-glaucoma group and patients with glaucoma and to compare these results to conventional time-domain-OCT (TD-OCT).
Resumo:
Purpose: To evaluate the possible associations between corneal biomechanical parameters, optic disc morphology, and retinal nerve fiber layer (RNFL) thickness in healthy white Spanish children. Methods: This cross-sectional study included 100 myopic children and 99 emmetropic children as a control group, ranging in age from 6 to 17 years. The Ocular Response Analyzer was used to measure corneal hysteresis (CH) and corneal resistance factor. The optic disc morphology and RNFL thickness were assessed using posterior segment optical coherence tomography (Cirrus HD-OCT). The axial length was measured using an IOLMaster, whereas the central corneal thickness was measured by anterior segment optical coherence tomography (Visante OCT). Results: The mean (±SD) age and spherical equivalent were 12.11 (±2.76) years and −3.32 (±2.32) diopters for the myopic group and 11.88 (±2.97) years and +0.34 (±0.41) diopters for the emmetropic group. In a multivariable mixed-model analysis in myopic children, the average RNFL thickness and rim area correlated positively with CH (p = 0.007 and p = 0.001, respectively), whereas the average cup-to-disc area ratio correlated negatively with CH (p = 0.01). We did not observe correlation between RNFL thickness and axial length (p = 0.05). Corneal resistance factor was only positively correlated with the rim area (p = 0.001). The central corneal thickness did not correlate with the optic nerve parameters or with RNFL thickness. These associations were not found in the emmetropic group (p > 0.05 for all). Conclusions: The corneal biomechanics characterized with the Ocular Response Analyzer system are correlated with the optic disc profile and RNFL thickness in myopic children. Low CH values may indicate a reduction in the viscous dampening properties of the cornea and the sclera, especially in myopic children.
Resumo:
Retinal microcirculatory changes are useful markers in patients suffering from hypertension and other cardiovascular disorders. Conversely, localized retinal nerve fiber layer defects (RNFLDs) are less frequently explored in association with hypertension.
Resumo:
To describe retinal nerve fiber layer changes in late-stage diffuse unilateral subacute neuroretinitis eyes and compare these results with healthy eyes observed through nerve fiber analyzer (GDx®). Methods: This is a retrospective case-control study in which 49 eyes in late-stage diffuse unilateral subacute neuroretinitis were examined from May/97 to December/ 01. First, eyes with diffuse unilateral subacute neuroretinitis and healthy contralateral eyes (Control Group I) were statistically matched. Subsequently, eyes with diffuse unilateral subacute neuroretinitis were compared with eyes of healthy patients (Control Group II). Results: Eyes from Control Groups I and II had higher relative frequency of “within normal limits” status. Eyes from the diffuse unilateral subacute neuroretinitis (DUSN) Group had higher frequency of “outside normal limits” and “borderline” status. Control Groups I and II had absolute values different from the DUSN Group regarding all parameters (p<0.05), except for Symmetry in Control Groups I and II, Average thickness and Superior Integral in control group II. Conclusion: Patients with late-stage diffuse unilateral subacute neuroretinitis presented presumed decrease in nerve fiber layer thickness shown by GDx®. Retinal zones with larger vascular support and larger amount of nerve fibers presented higher decrease in the delay of the reflected light measured by the nerve fiber analyzer
Resumo:
To describe retinal nerve fiber layer changes in late-stage diffuse unilateral subacute neuroretinitis eyes and compare these results with healthy eyes observed through nerve fiber analyzer (GDx®). Methods: This is a retrospective case-control study in which 49 eyes in late-stage diffuse unilateral subacute neuroretinitis were examined from May/97 to December/ 01. First, eyes with diffuse unilateral subacute neuroretinitis and healthy contralateral eyes (Control Group I) were statistically matched. Subsequently, eyes with diffuse unilateral subacute neuroretinitis were compared with eyes of healthy patients (Control Group II). Results: Eyes from Control Groups I and II had higher relative frequency of “within normal limits” status. Eyes from the diffuse unilateral subacute neuroretinitis (DUSN) Group had higher frequency of “outside normal limits” and “borderline” status. Control Groups I and II had absolute values different from the DUSN Group regarding all parameters (p<0.05), except for Symmetry in Control Groups I and II, Average thickness and Superior Integral in control group II. Conclusion: Patients with late-stage diffuse unilateral subacute neuroretinitis presented presumed decrease in nerve fiber layer thickness shown by GDx®. Retinal zones with larger vascular support and larger amount of nerve fibers presented higher decrease in the delay of the reflected light measured by the nerve fiber analyzer
Resumo:
Purpose: The purpose of this study was to develop and validate a multivariate predictive model to detect glaucoma by using a combination of retinal nerve fiber layer (RNFL), retinal ganglion cell-inner plexiform (GCIPL), and optic disc parameters measured using spectral-domain optical coherence tomography (OCT). Methods: Five hundred eyes from 500 participants and 187 eyes of another 187 participants were included in the study and validation groups, respectively. Patients with glaucoma were classified in five groups based on visual field damage. Sensitivity and specificity of all glaucoma OCT parameters were analyzed. Receiver operating characteristic curves (ROC) and areas under the ROC (AUC) were compared. Three predictive multivariate models (quantitative, qualitative, and combined) that used a combination of the best OCT parameters were constructed. A diagnostic calculator was created using the combined multivariate model. Results: The best AUC parameters were: inferior RNFL, average RNFL, vertical cup/disc ratio, minimal GCIPL, and inferior-temporal GCIPL. Comparisons among the parameters did not show that the GCIPL parameters were better than those of the RNFL in early and advanced glaucoma. The highest AUC was in the combined predictive model (0.937; 95% confidence interval, 0.911–0.957) and was significantly (P = 0.0001) higher than the other isolated parameters considered in early and advanced glaucoma. The validation group displayed similar results to those of the study group. Conclusions: Best GCIPL, RNFL, and optic disc parameters showed a similar ability to detect glaucoma. The combined predictive formula improved the glaucoma detection compared to the best isolated parameters evaluated. The diagnostic calculator obtained good classification from participants in both the study and validation groups.