970 resultados para neonatal respiratory distress syndrome


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To determine the acute and sustained effects of early inhaled nitric oxide on some oxygenation indexes and ventilator settings and to compare inhaled nitric oxide administration and conventional therapy on mortality rate, length of stay in intensive care, and duration of mechanical ventilation in children with acute respiratory distress syndrome. DESIGN: Observational study. SETTING: Pediatric intensive care unit at a university-affiliated hospital. PATIENTS: Children with acute respiratory distress syndrome, aged between 1 month and 12 yrs. INTERVENTIONS: Two groups were studied: an inhaled nitric oxide group (iNOG, n = 18) composed of patients prospectively enrolled from November 2000 to November 2002, and a conventional therapy group (CTG, n = 21) consisting of historical control patients admitted from August 1998 to August 2000. MEASUREMENTS AND MAIN RESULTS: Therapy with inhaled nitric oxide was introduced as early as 1.5 hrs after acute respiratory distress syndrome diagnosis with acute improvements in Pao(2)/Fio(2) ratio (83.7%) and oxygenation index (46.7%). Study groups were of similar ages, gender, primary diagnoses, pediatric risk of mortality score, and mean airway pressure. Pao(2)/Fio(2) ratio was lower (CTG, 116.9 +/- 34.5; iNOG, 62.5 +/- 12.8, p <.0001) and oxygenation index higher (CTG, 15.2 [range, 7.2-32.2]; iNOG, 24.3 [range, 16.3-70.4], p <.0001) in the iNOG. Prolonged treatment was associated with improved oxygenation, so that Fio(2) and peak inspiratory pressure could be quickly and significantly reduced. Mortality rate for inhaled nitric oxide-patients was lower (CTG, ten of 21, 47.6%; iNOG, three of 18, 16.6%, p <.001). There was no difference in intensive care stay (CTG, 10 days [range, 2-49]; iNOG, 12 [range, 6-26], p >.05) or duration of mechanical ventilation (TCG, 9 days [range, 2-47]; iNOG, 10 [range, 4-25], p >.05). CONCLUSIONS: Early treatment with inhaled nitric oxide causes acute and sustained improvement in oxygenation, with earlier reduction of ventilator settings, which might contribute to reduce the mortality rate in children with acute respiratory distress syndrome. Length of stay in intensive care and duration of mechanical ventilation are not changed. Prospective trials of inhaled nitric oxide early in the setting of acute lung injury in children are needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a newborn with respiratory distress and situs inversus totalis. The diagnosis of primary ciliary dyskinesia was confirmed by both ultrastructural and functional investigations. The immotile cilia syndrome was suspected because of respiratory distress, situs inversus, abnormal nasal discharge and hyperinflated chest X-ray. We suggest that ultrastructural and functional investigations of the respiratory mucosa should be done in any newborn with respiratory distress without explanation for the respiratory problems. Establishment of the correct diagnosis at an early stage may allow to improve the prognosis provided prophylactic physiotherapy, vaccinations, and aggressive antibiotic treatment of intercurrent respiratory infections are instituted. CONCLUSION Despite its rarity, primary ciliary dyskinesia should be considered in unexplained cases of neonatal distress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased pulmonary vascular resistance in preterm newborn infants with respiratory distress syndrome is suggested, and endothelin-1 plays an important role in pulmonary vascular reactivity in newborns. We determined umbilical cord blood and neonatal (second sample) levels of endothelin-1 in 18 preterm newborns with respiratory distress syndrome who had no clinical or echocardiographic diagnosis of pulmonary hypertension and 22 without respiratory distress syndrome (gestational ages: 31.4 ± 1.6 and 29.3 ± 2.3 weeks, respectively). Umbilical cord blood and a second blood sample taken 18 to 40 h after birth were used for endothelin-1 determination by enzyme immunoassay. Median umbilical cord blood endothelin-1 levels were similar in both groups (control: 10.9 and respiratory distress syndrome: 11.4 pg/mL) and were significantly higher than in the second sample (control: 1.7 pg/mL and respiratory distress syndrome: 3.5 pg/mL, P < 0.001 for both groups). Median endothelin-1 levels in the second sample were significantly higher in children with respiratory distress syndrome than in control infants (P < 0.001). There were significant positive correlations between second sample endothelin-1 and Score for Neonatal Acute Physiology and Perinatal Extension II (r = 0.36, P = 0.02), and duration of mechanical ventilation (r = 0.64, P = 0.02). A slower decline of endothelin-1 from birth to 40 h of life was observed in newborns with respiratory distress syndrome when compared to controls. A significant correlation between neonatal endothelin-1 levels and some illness-severity signs suggests that endothelin-1 plays a role in the natural course of respiratory distress syndrome in preterm newborns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infected lateral cervical cysts in newborn are rare. We present the case of a baby born at 41 weeks of gestation. At day 3, persistent cyanosis was noted, and a mass appeared in the left cervical region next to the sternocleidomastoid muscle. No cutaneous sinus was visible. Ultrasound imaging showed no sign of blood flow within the mass and no septae. The mass extended down to the aortic arch and pushed the trachea to the right. A cervical lymphangioma was first suspected. Puncture of the mass evacuated 80 mL of pus, and a drain was put in place. Opacification through the drain showed a tract originating from the left pyriform fossa. Preoperative laryngoscopy and catheterization of the fistula tract confirmed the diagnosis. The cyst was totally excised up to the sinus with the assistance of a guidewire inserted orally through a rigid laryngoscope. This is a rare case of an infected pyriform sinus cyst in the neonatal period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochrome P450 1A2 (CYP1A2) is a constitutively expressed hepatic enzyme that is highly conserved among mammals. This protein is primarily involved in oxidative metabolism of xenobiotics and is capable of metabolically activating numerous procarcinogens including aflatoxin B1, arylamines, heterocyclic amine food mutagens, and polycylic aromatic hydrocarbons. Expression of CYP1A2 is induced after exposure to certain aromatic hydrocarbons (i.e., 2,3,7,8-tetrachlorodibenzo-p-dioxin). Direct evidence for a role of CYP1A2 in any physiological or developmental pathway has not been documented. We now demonstrate that mice homozygous for a targeted mutation in the Cyp1a-2 gene are nonviable. Lethality occurs shortly after birth with symptoms of severe respiratory distress. Mutant neonates display impaired respiratory function associated with histological signs of lung immaturity, lack of air in alveoli at birth, and changes in expression of surfactant apoprotein in alveolar type II cells. The penetrance of the phenotype is not complete (19 mutants survived to adulthood out of 599 mice). Surviving animals, although lacking expression of CYP1A2, appear to be normal and are able to reproduce. These findings establish that CYP1A2 is critical for neonatal survival by influencing the physiology of respiration in neonates, thus offering etiological insights for neonatal respiratory distress syndrome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Respiratory distress syndrome (RDS) is one of the most common causes of neonatal respiratory failure and mortality. The risk of developing RDS decreases with both increasing gestational age and birth weight. Objectives: The aim of this study was to evaluate the value of lung ultrasound in the diagnosis of respiratory distress syndrome (RDS) in newborn infants. Materials and Methods: From March 2012 to May 2013, 100 newborn infants were divided into two groups: RDS group (50 cases) and control group (50 cases). According to the findings of chest x-ray, there were 10 cases of grade II RDS, 15 grade III cases, and 25 grade IV cases in RDS group. Lung ultrasound was performed at bedside by a single expert. The ultrasound indexes observed in this study included pleural line, A-line, B-line, lung consolidation, air bronchograms, bilateral white lung, interstitial syndrome, lung sliding, lung pulse etc. Results: In all of the infants with RDS, lung ultrasound consistently showed generalized consolidation with air bronchograms, bilateral white lung or alveolar-interstitial syndrome, pleural line abnormalities, A-line disappearance, pleural effusion, lung pulse, etc. The simultaneous demonstration of lung consolidation, pleural line abnormalities and bilateral white lung, or lung consolidation, pleural line abnormalities and A-line disappearance co-exists with a sensitivity and specificity of 100%. Besides, the sensitivity was 80% and specificity 100% of lung pulse for the diagnosis of neonatal RDS. Conclusions: This study indicates that using an ultrasound to diagnose neonatal RDS is accurate and reliable too. A lung ultrasound has many advantages over other techniques. Ultrasound is non-ionizing, low-cost, easy to operate, and can be performed at bedside, making this technique ideal for use in NICU.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: ABCA3 glycoprotein belongs to the ATP-binding cassette (ABC) superfamily of transporters, which utilize the energy derived from hydrolysis of ATP for the translocation of a wide variety of substrates across the plasma membrane. Mutations in the ABCA3 gene are knowingly causative for fatal surfactant deficiency, particularly respiratory distress syndrome (RDS) in term babies. Case Presentation: In this study, Sanger sequencing of the whole ABCA3 gene (NCBI NM_001089) was performed in a neonatal boy with severe RDS. A homozygous mutation has been identified in the patient. Parents were heterozygous for the same missense mutation GGA > AGA at position 202 in exon 6 of the ABCA3 gene (c.604G > A; p.G202R). Furthermore, 70 normal individuals have been analyzed for the mentioned change with negative results. Conclusions: Regarding Human Genome Mutation Database (HGMD) and other literature recherche, the detected change is a novel mutation and has not been reported before. Bioinformatics mutation predicting tools prefer it as pathogenic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Airway dysfunction in patients with the Acute Respiratory Distress Syndrome (ARDS) is evidenced by expiratory flow limitation and dynamic hyperinflation. These functional alterations have been attributed to closure/obstruction of small airways. Airway morphological changes have been reported in experimental models of acute lung injury, characterized by epithelial necrosis and denudation in distal airways. To date, however, no study has focused on the morphological airway changes in lungs from human subjects with ARDS. The aim of this study is to evaluate structural and inflammatory changes in distal airways in ARDS patients. Methods: We retrospectively studied autopsy lung tissue from subjects who died with ARDS and from control subjects who died of non pulmonary causes. Using image analysis, we quantified the extension of epithelial changes (normal, abnormal and denudated epithelium expressed as percentages of the total epithelium length), bronchiolar inflammation, airway wall thickness, and extracellular matrix (ECM) protein content in distal airways. The Student`s t test or the Mann-Whitney test was used to compare data between the ARDS and control groups. Bonferroni adjustments were used for multiple tests. The association between morphological and clinical data was analyzed by Pearson rank test. Results: Thirty-one ARDS patients (A: PaO(2)/FiO(2) <= 200, 45 +/- 14 years, 16 males) and 11 controls (C:52 +/- 16 years, 7 males) were included in the study. ARDS airways showed a shorter extension of normal epithelium (A:32.9 +/- 27.2%, C:76.7 +/- 32.7%, P < 0.001), a larger extension of epithelium denudation (A:52.6 +/- 35.2%, C:21.8 +/- 32.1%, P < 0.01), increased airway inflammation (A:1(3), C:0(1), P = 0.03), higher airway wall thickness (A:138.7 +/- 54.3 mu m, C:86.4 +/- 33.3 mu m, P < 0.01), and higher airway content of collagen I, fibronectin, versican and matrix metalloproteinase-9 (MMP-9) compared to controls (P = 0.03). The extension of normal epithelium showed a positive correlation with PaO(2)/FiO(2) (r(2) = 0.34; P = 0.02) and a negative correlation with plateau pressure (r(2) = 0.27; P = 0.04). The extension of denuded epithelium showed a negative correlation with PaO(2)/FiO(2) (r(2) = 0.27; P = 0.04). Conclusions: Structural changes in small airways of patients with ARDS were characterized by epithelial denudation, inflammation and airway wall thickening with ECM remodeling. These changes are likely to contribute to functional airway changes in patients with ARDS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paracoccidioidomycosis is a systemic mycosis that is usually acquired early in life by inhalation of conidia which convert in the lungs into yeast forms; these in turn trigger an inflammatory process. This mycosis may appear as an acute/subacute form or a chronic, adult form. Acute/subacute presentations can be observed in children and young adults, with the reticuloendothelial system frequently involved but the lungs are usually spared or present with mild clinical or radiological alterations. Acute respiratory distress syndrome (ARDS), an extensive dysfunction of the lungs alveolar-capillary barrier has occasionally been observed in other endemic mycoses such as coccidioidomycosis, cryptococcosis, histoplasmosis and blastomycosis. We describe the first patient with acute paracoccidioidomycosis who developed fatal ARDS accompanied by multiple organ injuries. The basis of the rarity of this entity in patients with paracoccidioidomycosis, as well as the reasons that may have lead to the development of ARDS in this patient are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: To evaluate the C-reactive protein (CRP) and interleukin-6 (IL-6) as diagnostic tools for early onset infection in preterm infants with early respiratory distress (RD). Methods: CRP and IL-6 were quantified at identification of RD and 24 h after in 186 newborns. Effects of maternal hypertension, mode of delivery, Apgar score, birth weight, gestational age, mechanical ventilation, being small for gestational age (SGA), and the presence of infection were analyzed. Results: Forty-four infants were classified as infected, 42 as possibly infected, and 100 as uninfected. Serum levels of IL-6 (0 h), CRP (0 h), and CRP (24 h), but not IL-6 (24 h) were significantly higher in infected infants compared to the remaining groups. The best test for identification of infection was the combination of IL-6 (0 h) 36 pg/dL and/or CRP (24 h) 0.6 mg/dL, which yielded 93% sensitivity and 37% specificity. The presence of infection and vaginal delivery independently increased IL-6 (0 h), CRP (0 h) and CRP (24 h) levels. Being SGA also increased the CRP (24 h) levels. IL-6 (24 h) was independently increased by mechanical ventilation. Conclusions: The combination of IL-6 (0 h) and/or CRP (24 h) is helpful for excluding early onset infection in preterm infants with RD but the poor specificity limits its potential benefit as a diagnostic tool.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: Acute respiratory distress syndrome is a common and highly lethal inflammatory lung syndrome. We previously have shown that an adenoviral vector expressing the heat shock protein (Hsp)70 (AdHSP) protects against experimental sepsis-induced acute respiratory distress syndrome in part by limiting neutrophil accumulation in the lung. Neutrophil accumulation and activation is modulated, in part, by the nuclear factor-kappaB (NF-kappaB) signal transduction pathway. NF-kappaB activation requires dissociation/degradation of a bound inhibitor, IkappaBalpha. IkappaBalpha degradation requires phosphorylation by IkappaB kinase, ubiquitination by the SCFbeta-TrCP (Skp1/Cullin1/Fbox beta-transducing repeat-containing protein) ubiquitin ligase, and degradation by the 26S proteasome. We tested the hypothesis that Hsp70 attenuates NF-kappaB activation at multiple points in the IkappaBalpha degradative pathway. DESIGN: Laboratory investigation. SETTING: University medical center research laboratory. SUBJECTS: Adolescent (200 g) Sprague-Dawley rats and murine lung epithelial-12 cells in culture. INTERVENTIONS: Lung injury was induced in rats via cecal ligation and double puncture. Thereafter, animals were treated with intratracheal injection of 1) phosphate buffer saline, 2) AdHSP, or 3) an adenovirus expressing green fluorescent protein. Murine lung epithelial-12 cells were stimulated with tumor necrosis factor-alpha and transfected. NF-kappaB was examined using molecular biological tools. MEASUREMENTS AND MAIN RESULTS: Intratracheal administration of AdHSP to rats with cecal ligation and double puncture limited nuclear translocation of NF-kappaB and attenuated phosphorylation of IkappaBalpha. AdHSP treatment reduced, but did not eliminate, phosphorylation of the beta-subunit of IkappaB kinase. In vitro kinase activity assays and gel filtration chromatography revealed that treatment of sepsis-induced lung injury with AdHSP induced fragmentation of the IkappaB kinase signalosome. This stabilized intermediary complexes containing IkappaB kinase components, IkappaBalpha, and NF-kappaB. Cellular studies indicate that although ubiquitination of IkappaBalpha was maintained, proteasomal degradation was impaired by an indirect mechanism. CONCLUSIONS: Treatment of sepsis-induced lung injury with AdHSP limits NF-kappaB activation. This results from stabilization of intermediary NF-kappaB/IkappaBalpha/IkappaB kinase complexes in a way that impairs proteasomal degradation of IkappaBalpha. This novel mechanism by which Hsp70 attenuates an intracellular process may be of therapeutic value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mortality of the acute respiratory distress syndrome (ARDS) remains extremely high and only few evidence-based specific treatments are currently available. Protective mechanical ventilation has emerged as the comer stone of the management of ARDS to avoid the occurrence of ventilation-induced lung injuries (VILI). Mechanical ventilation in the prone position has often been considered as a rescue therapy reserved to refractory hypoxemia. Since the publication of the PROSEVA study in 2013, early prone positioning for mechanical ventilation should be recommended to improve survival of patients with severe ARDS. In this article, both the theoretical and practical aspects of mechanical ventilation in prone position are reviewed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nine children surviving severe adult respiratory distress syndrome were studied 0.9 to 4.2 years after the acute illness. They had received artificial ventilation for a mean of 9.4 days, with an Fio2 greater than 0.5 during a mean time of 34 hours and maximal positive end expiratory pressure levels in the range of 8 to 20 cm H2O. Three children had recurrent respiratory symptoms (moderate exertional dyspnea and cough), and two had evidence of fibrosis on chest radiographs. All patients had abnormal lung function; the most prominent findings were ventilation inequalities, as judged by real-time moment ratio analysis of multibreath nitrogen washout curves (abnormal in eight of nine patients) and hypoxemia (seven of nine). Lung volumes were less abnormal; one patient had restrictive and two had obstructive disease. A significant correlation between intensive care measures (Fio2 greater than 0.5 in hours and peak inspiratory plateau pressure) and lung function abnormalities (moment ratio analysis and hypoxemia) was found. A possibly increased susceptibility of the pediatric age group to the primary insult or respiratory therapy of adult respiratory distress syndrome is suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Fibrotic changes are initiated early in acute respiratory distress syndrome. This may involve overproliferation of alveolar type II cells. In an animal model of acute respiratory distress syndrome, we have shown that the administration of an adenoviral vector overexpressing the 70-kd heat shock protein (AdHSP) limited pathophysiological changes. We hypothesized that this improvement may be modulated, in part, by an early AdHSP-induced attenuation of alveolar type II cell proliferation. DESIGN: Laboratory investigation. SETTING: Hadassah-Hebrew University and University of Pennsylvania animal laboratories. SUBJECTS: Sprague-Dawley Rats (250 g). INTERVENTIONS: Lung injury was induced in male Sprague-Dawley rats via cecal ligation and double puncture. At the time of cecal ligation and double puncture, we injected phosphate-buffered saline, AdHSP, or AdGFP (an adenoviral vector expressing the marker green fluorescent protein) into the trachea. Rats then received subcutaneous bromodeoxyuridine. In separate experiments, A549 cells were incubated with medium, AdHSP, or AdGFP. Some cells were also stimulated with tumor necrosis factor-alpha. After 48 hrs, cytosolic and nuclear proteins from rat lungs or cell cultures were isolated. These were subjected to immunoblotting, immunoprecipitation, electrophoretic mobility shift assay, fluorescent immunohistochemistry, and Northern blot analysis. MEASUREMENTS AND MAIN RESULTS: Alveolar type I cells were lost within 48 hrs of inducing acute respiratory distress syndrome. This was accompanied by alveolar type II cell proliferation. Treatment with AdHSP preserved alveolar type I cells and limited alveolar type II cell proliferation. Heat shock protein 70 prevented overexuberant cell division, in part, by inhibiting hyperphosphorylation of the regulatory retinoblastoma protein. This prevented retinoblastoma protein ubiquitination and degradation and, thus, stabilized the interaction of retinoblastoma protein with E2F1, a key cell division transcription factor. CONCLUSIONS: : Heat shock protein 70-induced attenuation of cell proliferation may be a useful strategy for limiting lung injury when treating acute respiratory distress syndrome if consistent in later time points.