884 resultados para nano-assemblies


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hierarchical assemblies of CaMoO4 (CM) nano-octahedrons were obtained by microwave-assisted hydrothemial synthesis at 120 degrees C for different times. These structures were structurally, morphologically and optically characterized by X-ray diffraction, micro-Raman spectroscopy, field-emission gun scanning electron microscopy, ultraviolet-visible absorption spectroscopy and photoluminescence measurements. First-principle calculations have been carried out to understand the structural and electronic order-disorder effects as a function of the particle/region size. Supercells of different dimensions were constructed to simulate the geometric distortions along both they and z planes of the scheelite structure. Based on these experimental results and with the help of detailed structural simulations, we were able to model the nature of the order-disorder in this important class of materials and discuss the consequent implications on its physical properties, in particular, the photoluminescence properties of CM nanocrystals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Cationic bilayers based on the inexpensive synthetic lipid dioctadecyldimethylammonium bromide (DODAB) have been useful as carriers for drug delivery, immunoadjuvants for vaccines and active antimicrobial agents. Methods: Rifampicin (RIF) or isoniazid (ISO) interacted with DODAB bilayer fragments (BF) or large vesicles (LV). Dispersions were evaluated by dynamic light-scattering for zeta-average diameter (Dz) and zeta-potential (zeta) analysis; dialysis for determination of drug entrapment efficiency; plating and CFU counting for determination of cell viability of Mycobacterium smegmatis or tuberculosis, minimal bactericidal concentration (MBC) and synergism index for DODAB/drug combinations. Results: DODAB alone killed micobacteria over a range of micromolar concentrations. RIF aggregates in water solution were solubilised by DODAB BF. RIF was incorporated in DODAB bilayers at high percentiles in contrast to the leaky behavior of ISO. Combination DODAB/RIF yielded MBCs of 2/2 and 4/0.007 mu g/mL against Mycobacterium smegmatis or Mycobacterium tuberculosis, respectively. Synergism indexes equal to 0.5 or 1.0, indicated synergism against the former and independent action, against the latter species. Conclusions: In vitro, DODAB acted effectively both as micobactericidal agent and carrier for rifampicin. The novel assemblies at reduced doses may become valuable against tuberculosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on an experimental study of the structures presented by urethane/urea elastomeric films without and with ferromagnetic nanoparticles incorporated. The study is made by using the X-ray diffraction, nuclear magnetic resonance (NMR), optical, atomic and magnetic force (MFM) microscopy techniques, and mechanical assays. The structure of the elastomeric matrix is characterized by a distance of 0.46 nm between neighboring molecular segments, almost independent on the stretching applied. The shear casting performed in order to obtain the elastomeric films tends to orient the molecules parallel to the flow direction thus introducing anisotropy in the molecular network which is reflected on the values obtained for the orientational order parameter and its increase for the stretched films. In the case of nanoparticles-doped samples, the structure remains nearly unchanged although the local order parameter is clearly larger for the undoped films. NMR experiments evidence modifications in the molecular network local ordering. Micrometer size clusters were observed by MFM for even small concentration of magnetic particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a novel way to introduce gold nanoparticles (Au NPs) in a multilayer polymer produced by the layer-by-layer (LbL) assembling technique. The technique chosen shows that, depending on the pH used, different morphological structures can be obtained from monolayer or bilayer Au NPs. The MEIS and RBS techniques allowed for the modelling of the interface polymer-NPs, as well as the understanding of the interaction of LbL system, when adjusting the pH in weak polyelectrolytes. The process reveals that the optical properties of multilayer systems could be fine-tuned by controlling the addition of metallic nanoparticles, which could also modify specific polarization responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are many industrial advantages of using mechanical multi-oxides mixtures to obtain ceramic parts by electrophoretic deposition (EPD). This is mainly because one could avoid complex chemical synthesis routes to achieve a desirable composition. However, EPD of these suspensions is not an easy task as well since many different surfaces are present, leading to unexpected suspension behavior. The particles surface potentials and interactions can, however, be predicted by an extension of the DLVO theory. Using this theory, one can control the suspension properties and particles distribution. The objective of this work was to apply the colloidal chemistry theories to promote the formation of a heterocoagulation between ZrO(2) and Y(2)O(3) particles in ethanol suspension to achieve a suitable condition for EPD. After identifying a condition where those particles had opposite surface charges and adequate relative sizes, heterocoagulation was observed at operational pH 7.5, generating an organized agglomerate with ZrO(2) particles surrounding Y(2)O(3), with a net zeta potential of -16.6 mV. Since the agglomerates were stable, EPD could be carried out and homogeneous deposits were obtained. The deposited bodies were sintered at 1600 A degrees C for 4 h and partially stabilized ZrO(2) could be obtained without traces of Y(2)O(3) second phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the detection of living colonies of nano-organisms (nanobes) on Triassic and Jurassic sandstones and other substrates. Nanobes have cellular structures that are strikingly similar in morphology to Actinomycetes and fungi (spores, filaments, and fruiting bodies) with the exception that they are up to 10 times smaller in diameter (20 nm to 1.0 mu m). Nanobes are noncrystalline structures that are composed of C, O, and N. Ultra thin sections of nanobes show the existence of an outer layer or membrane that may represent a cell wall. This outer layer surrounds an electron dense region interpreted to be the cytoplasm and a less electron dense central region that may represent a nuclear area. Nanobes show a positive reaction to three DNA stains, [4',6-diamidino-2 phenylindole (DAPI), Acridine Orange, and Feulgen], which strongly suggests that nanobes contain DNA. Nanobes are communicable and grow in aerobic conditions at atmospheric pressure and ambient temperatures. While morphologically distinct, nanobes are in the same size range as the controversial fossil nannobacteria described by others in various rock types and in the Martian meteorite ALH84001.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sm and Sm-like proteins are key components of small ribonucleoproteins involved in many RNA and DNA processing pathways. In eukaryotes, these complexes contain seven unique Sm or Sm-like (Lsm) proteins assembled as hetero-heptameric rings, whereas in Archaea and bacteria six or seven-membered rings are made from only a single polypeptide chain. Here we show that single Sm and Lsm proteins from yeast also have the capacity to assemble into homo-oligomeric rings. Formation of homo-oligomers by the spliceosomal small nuclear ribonucleoprotein components SmE and SmF preclude hetero-interactions vital to formation of functional small nuclear RNP complexes in vivo. To better understand these unusual complexes, we have determined the crystal structure of the homomeric assembly of the spliceosomal protein SmF. Like its archaeal/bacterial homologs, the SmF complex forms a homomeric ring but in an entirely novel arrangement whereby two heptameric rings form a co-axially stacked dimer via interactions mediated by the variable loops of the individual SmF protein chains. Furthermore, we demonstrate that the homomeric assemblies of yeast Sm and Lsm proteins are capable of binding not only to oligo(U) RNA but, in the case of SmF, also to oligo(dT) single-stranded DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adherent umbilical cord blood stromal cells (AUCBSCs) are multipotent cells with differentiation capacities. Therefore, these cells have been investigated for their potential in cell-based therapies. Quantum Dots (QDs) are an alternative to organic dyes and fluorescent proteins because of their long-term photostability. In this study we determined the effects of the cell passage on AUCBSCs morphology, phenotype, and differentiation potential. QDs labeled AUCBSCs in the fourth cell passage were differentiated in the three mesodermal lineages and were evaluated using cytochemical methods and transmission electron microscopy (TEM). Gene and protein expression of the AUCBSCs immunophenotypic markers were also evaluated in the labeled cells by real-time quantitative PCR and flow cytometry. In this study we were able to define the best cellular passage to work with AUCBSCs and we also demonstrated that the use of fluorescent QDs can be an efficient nano-biotechnological tool in differentiation studies because labeled cells do not have their characteristics compromised.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a model for permeation in oxide coated gas barrier films. The model accounts for diffusion through the amorphous oxide lattice, nano-defects within the lattice, and macro-defects. The presence of nano-defects indicate the oxide layer is more similar to a nano-porous solid (such as zeolite) than silica glass with respect to permeation properties. This explains why the permeability of oxide coated polymers is much greater, and the activation energy of permeation much lower, than values expected for polymers coated with glass. We have used the model to interpret permeability and activation energies measured for the inert gases (He, Ne and Ar) in evaporated SiOx films of varying thickness (13-70 nm) coated on a polymer substrate. Atomic force and scanning electron microscopy were used to study the structure of the oxide layer. Although no defects could be detected by microscopy, the permeation data indicate that macro-defects (>1 nm), nano-defects (0.3-0.4 nm) and the lattice interstices (<0.3 nm) all contribute to the total permeation. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Doped ceria (CeO2) compounds are fluorite type oxides that show oxygen ionic conductivity higher than yttria stabilized zirconia, in oxidizing atmosphere. In order to improve the conductivity, the effective index was suggested to maximize the oxygen ionic conductivity in doped CeO2 based oxides. In addition, the true microstructure of doped CeO2 was observed at atomic scale for conclusion of conduction mechanism. Doped CeO2 had small domains (10-50 nm) with ordered structure in a grain. It is found that the electrolytic properties strongly depended on the nano-structural feature at atomic scale in doped CeO2 electrolyte.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variation of the physical properties of four differ- ent carbon nanofibers (CNFs), based-polymer nano- composites incorporated in the same polypropylene (PP) matrix by twin-screw extrusion process was investigated. Nanocomposites fabricated with CNFs with highly graphitic outer layer revealed electrical isolation-to-conducting behaviors as function of CNF’s content. Nanocomposites fabricated with CNFs with an outer layer consisting on a disordered pyro- litically stripped layer, in contrast, revealed better mechanical performance and enhanced thermal sta- bility. Further, CNF’s incorporation into the polymer increased the thermal stability and the degree of crystallinity of the polymer, independently on the filler content and type. In addition, dispersion of the CNFs’ clusters in PP was analyzed by transmitted light opti- cal microscopy, and grayscale analysis (GSA). The results showed a correlation between the filler concentration and the variance, a parameter which measures quantitatively the dispersion, for all composites. This method indicated a value of 1.4 vol% above which large clusters of CNFs cannot be dispersed effectively and as a consequence only slight changes in mechanical performance are observed. Finally, this study establishes that for tailoring the physical properties of CNF based-polymer nanocomposites, both adequate CNFs structure and content have to be chosen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micro- and nano-patterned materials are of great importance for the design of new nanoscale electronic, optical and mechanical devices, ranging from sensors to displays. A prospective system that can support a designed functionality is elastomeric polyurethane thin films with nano- or micromodulated surface structures ("wrinkles"). These wrinkles can be induced on different lengthscales by mechanically stretching the films, without the need for any sophisticated lithographic techniques. In the present article we focus on the experimental control of the wrinkling process. A simple model for wrinkle formation is also discussed, and some preliminary results reported. Hierarchical assembly of these tunable structures paves the way for the development of a new class of materials with a wide range of applications, from electronics to biomedicine.