834 resultados para multiple regression analysis
Resumo:
A quantitative structure-property study has been made on the relationship between molar absorptivities (epsilon) of asymmetrical phosphone bisazo derivatives of chromotropic acid and their color reactions with cerium by multiple regression analysis and neural network. The new topological indices A(x1) - A(x3) suggested in our laboratory and molecular connectivity indices of 43 compounds have been calculated. The results obtained from the two methods are compared. The neural network model is superior to the regression analysis technique and gave a prediction which was sufficiently accurate to estimate the molar absorptivities of color reagents during their color reactions with cerium.
Resumo:
In this study, the surface properties of and work required to remove 12 commercially available and developmental catheters from a model biological medium (agar), a measure of catheter lubricity, were characterised and the relationships between these properties were examined using multiple regression and correlation analysis. The work required for removal of catheter sections (7 cm) from a model biological medium (1% w/w agar) were examined using tensile analysis. The water wettability of the catheters were characterised using dynamic contact angle analysis, whereas surface roughness was determined using atomic force microscopy. Significant differences in the ease of removal were observed between the various catheters, with the silicone-based materials generally exhibiting the greatest ease of removal. Similarly, the catheters exhibited a range of advancing and receding contact angles that were dependent on the chemical nature of each catheter. Finally, whilst the microrugosities of the various catheters differed, no specific relationship to the chemical nature of the biomaterial was apparent. Using multiple regression analysis, the relationship between ease of removal, receding contact angle and surface roughness was defined as: Work done (N mm) 17.18 + 0.055 Rugosity (nm)-0.52 Receding contact angle (degrees) (r = 0.49). Interestingly, whilst the relationship between ease of removal and surface roughness was significant (r = 0.48, p = 0.0005), in which catheter lubricity increased as the surface roughness decreased, this was not the case with the relationship between ease of removal and receding contact angle (r = -0.18, p > 0.05). This study has therefore uniquely defined the contributions of each of these surface properties to catheter lubricity. Accordingly, in the design of urethral catheters. it is recommended that due consideration should be directed towards biomaterial surface roughness to ensure maximal ease of catheter removal. Furthermore, using the method described in this study, differences in the lubricity of the various catheters were observed that may be apparent in their clinical use. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Resumen tomado de la publicación
Resumo:
Multiple regression analysis is a statistical technique which allows to predict a dependent variable from m ore than one independent variable and also to determine influential independent variables. Using experimental data, in this study the multiple regression analysis is applied to predict the room mean velocity and determine the most influencing parameters on the velocity. More than 120 experiments for four different heat source locations were carried out in a test chamber with a high level wall mounted air supply terminal at air change rates 3-6 ach. The influence of the environmental parameters such as supply air momentum, room heat load, Archimedes number and local temperature ratio, were examined by two methods: a simple regression analysis incorporated into scatter matrix plots and multiple stepwise regression analysis. It is concluded that, when a heat source is located along the jet centre line, the supply momentum mainly influences the room mean velocity regardless of the plume strength. However, when the heat source is located outside the jet region, the local temperature ratio (the inverse of the local heat removal effectiveness) is a major influencing parameter.
Resumo:
Issued May 1980.
Resumo:
The aim of this research work was primarily to examine the relevance of patient parameters, ward structures, procedures and practices, in respect of the potential hazards of wound cross-infection and nasal colonisation with multiple resistant strains of Staphylococcus aureus, which it is thought might provide a useful indication of a patient's general susceptibility to wound infection. Information from a large cross-sectional survey involving 12,000 patients from some 41 hospitals and 375 wards was collected over a five-year period from 1967-72, and its validity checked before any subsequent analysis was carried out. Many environmental factors and procedures which had previously been thought (but never conclusively proved) to have an influence on wound infection or nasal colonisation rates, were assessed, and subsequently dismissed as not being significant, provided that the standard of the current range of practices and procedures is maintained and not allowed to deteriorate. Retrospective analysis revealed that the probability of wound infection was influenced by the patient's age, duration of pre-operative hospitalisation, sex, type of wound, presence and type of drain, number of patients in ward, and other special risk factors, whilst nasal colonisation was found to be influenced by the patient's age, total duration of hospitalisation, sex, antibiotics, proportion of occupied beds in the ward, average distance between bed centres and special risk factors. A multi-variate regression analysis technique was used to develop statistical models, consisting of variable patient and environmental factors which were found to have a significant influence on the risks pertaining to wound infection and nasal colonisation. A relationship between wound infection and nasal colonisation was then established and this led to the development of a more advanced model for predicting wound infections, taking advantage of the additional knowledge of the patient's state of nasal colonisation prior to operation.
Resumo:
In this paper, the new topological indices A(x1)-A(x3) suggested in our laboratory and molecular connectivity indices have been applied to multivariate analysis in structure-property studies. The topological indices of twenty asymmetrical phosphono bisazo derivatives of chromotropic acid have been calculated. The structure-property relationships between colour reagents and their colour reactions with ytterbium have been studied by A(x1)-A(x3) indices and molecular connectivity indices with satisfactory results. Multiple regression analysis and neural networks were employed simultaneously in this study.
Resumo:
In this paper, multiple regression analysis is used to model the top of descent (TOD) location of user-preferred descent trajectories computed by the flight management system (FMS) on over 1000 commercial flights into Melbourne, Australia. In addition to recording TOD, the cruise altitude, final altitude, cruise Mach, descent speed, wind, and engine type were also identified for use as the independent variables in the regression analysis. Both first-order and second-order models are considered, where cross-validation, hypothesis testing, and additional analysis are used to compare models. This identifies the models that should give the smallest errors if used to predict TOD location for new data in the future. A model that is linear in TOD altitude, final altitude, descent speed, and wind gives an estimated standard deviation of 3.9 nmi for TOD location given the trajectory parame- ters, which means about 80% of predictions would have error less than 5 nmi in absolute value. This accuracy is better than demonstrated by other ground automation predictions using kinetic models. Furthermore, this approach would enable online learning of the model. Additional data or further knowledge of algorithms is necessary to conclude definitively that no second-order terms are appropriate. Possible applications of the linear model are described, including enabling arriving aircraft to fly optimized descents computed by the FMS even in congested airspace.
Resumo:
Researchers often use 3-way interactions in moderated multiple regression analysis to test the joint effect of 3 independent variables on a dependent variable. However, further probing of significant interaction terms varies considerably and is sometimes error prone. The authors developed a significance test for slope differences in 3-way interactions and illustrate its importance for testing psychological hypotheses. Monte Carlo simulations revealed that sample size, magnitude of the slope difference, and data reliability affected test power. Application of the test to published data yielded detection of some slope differences that were undetected by alternative probing techniques and led to changes of results and conclusions. The authors conclude by discussing the test's applicability for psychological research. Copyright 2006 by the American Psychological Association.
Resumo:
A combinatorial protocol (CP) is introduced here to interface it with the multiple linear regression (MLR) for variable selection. The efficiency of CP-MLR is primarily based on the restriction of entry of correlated variables to the model development stage. It has been used for the analysis of Selwood et al data set [16], and the obtained models are compared with those reported from GFA [8] and MUSEUM [9] approaches. For this data set CP-MLR could identify three highly independent models (27, 28 and 31) with Q2 value in the range of 0.632-0.518. Also, these models are divergent and unique. Even though, the present study does not share any models with GFA [8], and MUSEUM [9] results, there are several descriptors common to all these studies, including the present one. Also a simulation is carried out on the same data set to explain the model formation in CP-MLR. The results demonstrate that the proposed method should be able to offer solutions to data sets with 50 to 60 descriptors in reasonable time frame. By carefully selecting the inter-parameter correlation cutoff values in CP-MLR one can identify divergent models and handle data sets larger than the present one without involving excessive computer time.