986 resultados para modeling tools


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several Architecture Description Languages (ADLs) are emerging as models to describe and represent system architectures. Among others, EAST-ADL language is highlighted. It represents an abstraction of embedded software systems for automobiles. Given the need to implement the EAST-ADL language, there are many modeling tools to perform this task. The scope of this thesis is a detailed comparison of three EAST-ADL editors: Papyrus, EATOP and MetaEdit +, providing a conceptual framework, describing the comparison criteria, and finally exemplifying thanks to the Brake-By-Wire use case which has been provided, and whose development is not the subject of this project. The motivation for developing this project is to provide comparison guide between these three modeling tools to facilitate developers choice when deciding the tool in which develop their work. RESUMEN. Diversos Lenguajes de Descripción de Arquitecturas (ADLs) están surgiendo como modelos para describir y representar arquitecturas de sistemas. Entre ellos es destacado el lenguaje EAST-ADL, que representa una abstracción de los sistemas de software embebido para automóviles. Ante la necesidad de implementar el lenguaje EAST-ADL, han surgido diversas herramientas de modelado que llevan a cabo esta tarea. El alcance de este proyecto consiste en una comparación detallada de tres editores EAST-ADL: Papyrus, EATOP y MetaEdit+, proporcionando un marco conceptual, describiendo los criterios de comparación y finalmente ejemplificando con el caso de uso Brake-By-Wire que nos ha sido proporcionado, y cuyo desarrollo no es sujeto de este proyecto. La motivación para desarrollar este proyecto parte de proporcionar al usuario una guía comparativa de estas tres herramientas de modelado para facilitar su elección a la hora de desarrollar su trabajo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study deals with the development of systematic conservation planning as management instrument in small oceanic islands, ensuring open systems of governance, and able to integrate an informed and involved participation of the stakeholders. Marxan software was used to define management areas according a set of alternative land use scenarios considering different conservation and management paradigms. Modeled conservation zones were interpreted and compared with the existing protected areas allowing more fused information for future trade-outs and stakeholder's involvement. The results, allowing the identification of Target Management Units (TMU) based on the consideration of different development scenarios proved to be consistent with a feasible development of evaluation approaches able to support sound governance systems. Moreover, the detailed geographic identification of TMU seems to be able to support participated policies towards a more sustainable management of the entire island

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this paper is to develop models for experimental open-channel water delivery systems and assess the use of three data-driven modeling tools toward that end. Water delivery canals are nonlinear dynamical systems and thus should be modeled to meet given operational requirements while capturing all relevant dynamics, including transport delays. Typically, the derivation of first principle models for open-channel systems is based on the use of Saint-Venant equations for shallow water, which is a time-consuming task and demands for specific expertise. The present paper proposes and assesses the use of three data-driven modeling tools: artificial neural networks, composite local linear models and fuzzy systems. The canal from Hydraulics and Canal Control Nucleus (A parts per thousand vora University, Portugal) will be used as a benchmark: The models are identified using data collected from the experimental facility, and then their performances are assessed based on suitable validation criterion. The performance of all models is compared among each other and against the experimental data to show the effectiveness of such tools to capture all significant dynamics within the canal system and, therefore, provide accurate nonlinear models that can be used for simulation or control. The models are available upon request to the authors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia Informática

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Building a personalized model to describe the drug concentration inside the human body for each patient is highly important to the clinical practice and demanding to the modeling tools. Instead of using traditional explicit methods, in this paper we propose a machine learning approach to describe the relation between the drug concentration and patients' features. Machine learning has been largely applied to analyze data in various domains, but it is still new to personalized medicine, especially dose individualization. We focus mainly on the prediction of the drug concentrations as well as the analysis of different features' influence. Models are built based on Support Vector Machine and the prediction results are compared with the traditional analytical models.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study presents an agile tool set for the business modeling in companies, entering the turbulent environment. The study’s aim is to explore business modeling techniques and their tooling by utilizing a case study of a Finnish media monitoring company, expanding to the Russian market. This work proposes a tailored “two-approach” of business modeling development that analyzes both the past and future conditions of two key factors of business modeling for companies – internal and external environments. The study explores a case company by investigating the benefits and disadvantages of firm’s present business modeling tools, developing a new tooling and applying it to the case company. Among primary data utilization, such as interviews with media monitoring industry analysts and representatives of the competing companies, and academic experts, study leans up on the comprehensive analysis of Russian media monitoring niche and its players. This study benefits the business modeling research area and combines traditional analysis tools, such as market, PESTLE and competitor analyses, in a systemic manner, with the business modeling techniques. This transformation proceeds through applying of the integrated scenario, heat map and critical design issues’ analyses in the societal, industrial and competitive context of turbulent environments. The practical outcome of this approach is the development of agile business modeling tool set, customizable by company’s requirements.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Modeling is an essential tool for the development of atmospheric emission abatement measures and air quality plans. Most often these plans are related to urban environments with high emission density and population exposure. However, air quality modeling in urban areas is a rather challenging task. As environmental standards become more stringent (e.g. European Directive 2008/50/EC), more reliable and sophisticated modeling tools are needed to simulate measures and plans that may effectively tackle air quality exceedances, common in large urban areas across Europe, particularly for NO2. This also implies that emission inventories must satisfy a number of conditions such as consistency across the spatial scales involved in the analysis, consistency with the emission inventories used for regulatory purposes and versatility to match the requirements of different air quality and emission projection models. This study reports the modeling activities carried out in Madrid (Spain) highlighting the atmospheric emission inventory development and preparation as an illustrative example of the combination of models and data needed to develop a consistent air quality plan at urban level. These included a series of source apportionment studies to define contributions from the international, national, regional and local sources in order to understand to what extent local authorities can enforce meaningful abatement measures. Moreover, source apportionment studies were conducted in order to define contributions from different sectors and to understand the maximum feasible air quality improvement that can be achieved by reducing emissions from those sectors, thus targeting emission reduction policies to the most relevant activities. Finally, an emission scenario reflecting the effect of such policies was developed and the associated air quality was modeled.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Knowledge modeling tools are software tools that follow a modeling approach to help developers in building a knowledge-based system. The purpose of this article is to show the advantages of using this type of tools in the development of complex knowledge-based decision support systems. In order to do so, the article describes the development of a system called SAIDA in the domain of hydrology with the help of the KSM modeling tool. SAIDA operates on real-time receiving data recorded by sensors (rainfall, water levels, flows, etc.). It follows a multi-agent architecture to interpret the data, predict the future behavior and recommend control actions. The system includes an advanced knowledge based architecture with multiple symbolic representation. KSM was especially useful to design and implement the complex knowledge based architecture in an efficient way.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of the paper is to discuss the use of knowledge models to formulate general applications. First, the paper presents the recent evolution of the software field where increasing attention is paid to conceptual modeling. Then, the current state of knowledge modeling techniques is described where increased reliability is available through the modern knowledge acquisition techniques and supporting tools. The KSM (Knowledge Structure Manager) tool is described next. First, the concept of knowledge area is introduced as a building block where methods to perform a collection of tasks are included together with the bodies of knowledge providing the basic methods to perform the basic tasks. Then, the CONCEL language to define vocabularies of domains and the LINK language for methods formulation are introduced. Finally, the object oriented implementation of a knowledge area is described and a general methodology for application design and maintenance supported by KSM is proposed. To illustrate the concepts and methods, an example of system for intelligent traffic management in a road network is described. This example is followed by a proposal of generalization for reuse of the resulting architecture. Finally, some concluding comments are proposed about the feasibility of using the knowledge modeling tools and methods for general application design.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As environmental standards become more stringent (e.g. European Directive 2008/50/EC), more reliable and sophisticated modeling tools are needed to simulate measures and plans that may effectively tackle air quality exceedances, common in large cities across Europe, particularly for NO2. Modeling air quality in urban areas is rather complex since observed concentration values are a consequence of the interaction of multiple sources and processes that involve a wide range of spatial and temporal scales. Besides a consistent and robust multi-scale modeling system, comprehensive and flexible emission inventories are needed. This paper discusses the application of the WRF-SMOKE-CMAQ system to the Madrid city (Spain) to assess the contribution of the main emitting sectors in the region. A detailed emission inventory was compiled for this purpose. This inventory relies on bottom-up methods for the most important sources. It is coupled with the regional traffic model and it makes use of an extensive database of industrial, commercial and residential combustion plants. Less relevant sources are downscaled from national or regional inventories. This paper reports the methodology and main results of the source apportionment study performed to understand the origin of pollution (main sectors and geographical areas) and define clear targets for the abatement strategy. Finally the structure of the air quality monitoring is analyzed and discussed to identify options to improve the monitoring strategy not only in the Madrid city but the whole metropolitan area.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Much research has been devoted over the years to investigating and advancing the techniques and tools used by analysts when they model. As opposed to what academics, software providers and their resellers promote as should be happening, the aim of this research was to determine whether practitioners still embraced conceptual modeling seriously. In addition, what are the most popular techniques and tools used for conceptual modeling? What are the major purposes for which conceptual modeling is used? The study found that the top six most frequently used modeling techniques and methods were ER diagramming, data flow diagramming, systems flowcharting, workflow modeling, UML, and structured charts. Modeling technique use was found to decrease significantly from smaller to medium-sized organizations, but then to increase significantly in larger organizations (proxying for large, complex projects). Technique use was also found to significantly follow an inverted U-shaped curve, contrary to some prior explanations. Additionally, an important contribution of this study was the identification of the factors that uniquely influence the decision of analysts to continue to use modeling, viz., communication (using diagrams) to/from stakeholders, internal knowledge (lack of) of techniques, user expectations management, understanding models' integration into the business, and tool/software deficiencies. The highest ranked purposes for which modeling was undertaken were database design and management, business process documentation, business process improvement, and software development. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-08

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The field of bioelectronics involves the use of electrodes to exchange electrical signals with biological systems for diagnostic and therapeutic purposes in biomedical devices and healthcare applications. However, the mechanical compatibility of implantable devices with the human body has been a challenge, particularly with long-term implantation into target organs. Current rigid bioelectronics can trigger inflammatory responses and cause unstable device functions due to the mechanical mismatch with the surrounding soft tissue. Recent advances in flexible and stretchable electronics have shown promise in making bioelectronic interfaces more biocompatible. To fully achieve this goal, material science and engineering of soft electronic devices must be combined with quantitative characterization and modeling tools to understand the mechanical issues at the interface between electronic technology and biological tissue. Local mechanical characterization is crucial to understand the activation of failure mechanisms and optimizing the devices. Experimental techniques for testing mechanical properties at the nanoscale are emerging, and the Atomic Force Microscope (AFM) is a good candidate for in situ local mechanical characterization of soft bioelectronic interfaces. In this work, in situ experimental techniques with solely AFM supported by interpretive models for the characterization of planar and three-dimensional devices suitable for in vivo and in vitro biomedical experimentations are reported. The combination of the proposed models and experimental techniques provides access to the local mechanical properties of soft bioelectronic interfaces. The study investigates the nanomechanics of hard thin gold films on soft polymeric substrates (Poly(dimethylsiloxane) PDMS) and 3D inkjet-printed micropillars under different deformation states. The proposed characterization methods provide a rapid and precise determination of mechanical properties, thus giving the possibility to parametrize the microfabrication steps and investigate their impact on the final device.