953 resultados para mid-Holocene
Resumo:
Several fringing coral reefs in Moreton Bay, Southeast Queensland, some 300 km south of the Great Barrier Reef (GBR), are set in a relatively high latitude, estuarine environment that is considered marginal for coral growth. Previous work indicated that these marginal reefs, as with many fringing reefs of the inner GBR, ceased accreting in the mid-Holocene. This research presents for the first time data from the subsurface profile of the mid-Holocene fossil reef at Wellington Point comprising U/Th dates of in situ and framework corals, and trace element analysis from the age constrained carbonate fragments. Based on trace element proxies the palaeo-water quality during reef accretion was reconstructed. Results demonstrate that the reef initiated more than 7,000 yr BP during the post glacial transgression, and the initiation progressed to the west as sea level rose. In situ micro-atolls indicate that sea level was at least 1 m above present mean sea level by 6,680 years ago. The reef remained in "catch-up" mode, with a seaward sloping upper surface, until it stopped aggrading abruptly at ca 6,000 yr BP; no lateral progradation occurred. Changes in sediment composition encountered in the cores suggest that after the laterite substrate was covered by the reef, most of the sediment was produced by the carbonate factory with minimal terrigenous influence. Rare earth element, Y and Ba proxies indicate that water quality during reef accretion was similar to oceanic waters, considered suitable for coral growth. A slight decline in water quality on the basis of increased Ba in the later stages of growth may be related to increased riverine input and partial closing up of the bay due to either tidal delta progradation, climatic change and/or slight sea level fall. The age data suggest that termination of reef growth coincided with a slight lowering of sea level, activation of ENSO and consequent increase in seasonality, lowering of temperatures and the constrictions to oceanic flushing. At the cessation of reef accretion the environmental conditions in the western Moreton Bay were changing from open marine to estuarine. The living coral community appears to be similar to the fossil community, but without the branching Acropora spp. that were more common in the fossil reef. In this marginal setting coral growth periods do not always correspond to periods of reef accretion due to insufficient coral abundance. Due to several environmental constraints modern coral growth is insufficient for reef growth. Based on these findings Moreton Bay may be unsuitable as a long term coral refuge for most species currently living in the GBR.
Resumo:
It is increasingly apparent that sea-level data (e.g. microfossil transfer functions, dated coral microatolls and direct observations from satellite and tidal gauges) vary temporally and spatially at regional to local scales, thus limiting our ability to model future sea-level rise for many regions. Understanding sealevel response at ‘far-field’ locations at regional scales is fundamental for formulating more relevant sea-level rise susceptibility models within these regions under future global change projections. Fossil corals and reefs in particular are valuable tools for reconstructing past sea levels and possible environmental phase shifts beyond the temporal constraints of instrumental records. This study used abundant surface geochronological data based on in situ subfossil corals and precise elevation surveys to determine previous sea level in Moreton Bay, eastern Australia, a far-field site. A total of 64 U-Th dates show that relative sea level was at least 1.1 m above modern lowest astronomical tide (LAT) from at least ˜6600 cal. yr BP. Furthermore, a rapid synchronous demise in coral reef growth occurred in Moreton Bay ˜5800 cal. yr BP, coinciding with reported reef hiatus periods in other areas around the Indo-Pacific region. Evaluating past reef growth patterns and phases allows for a better interpretation of anthropogenic forcing versus natural environmental/climatic cycles that effect reef formation and demise at all scales and may allow better prediction of reef response to future global change.
Resumo:
Claims for mid-Holocene Aboriginal occupation at the shell matrix site of Wurdukanhan, Mornington Island, Gulf of Carpentaria, Australia, are reassessed through an analysis of the excavated assemblage coupled with new surveys and an extensive dating program. Memmott et al. (2006, pp. 38, 39) reported basal ages of c.5000–5500 years from Wurdukanhan as 'the oldest date yet obtained for any archaeological site on the coast of the southern Gulf of Carpentaria' and used these dates to argue for 'a relatively lengthy occupation since at least the mid-Holocene'. If substantiated, with the exception of western Torres Strait, these claims make Mornington Island the only offshore island used across northern Australia in the mid-Holocene where it is conventionally thought that Aboriginal people only (re)colonised islands after sea-level maximum was achieved after the mid-Holocene. Our analysis of Wurdukanhan demonstrates high shellfish taxa diversity, high rates of natural shell predation and high densities of foraminifera throughout the deposit demonstrating a natural origin for the assemblage. Results are considered in the context of other dated shell matrix sites in the area and a geomorphological model for landscape development of the Sandalwood River catchment.
Resumo:
IEECAS SKLLQG
Resumo:
IEECAS SKLLQG
Resumo:
As a high-sedimentation rate depocenter along the path of the Kuroshio Current, the southwesternmost part of the Okinawa Trough is a key area to understand the Kuroshio history and sediments transportation. A 34.17-m-long sediment core was obtained by the advanced piston corer of Marco Polo/IMAGES XII MARION DUFRESNE during the May 2005 from the Southern Okinawa Trough at site MD05-2908. The recovered sediments were analyzed by AMS C-14 dating, coarse size fraction (> 63 mu m) extraction and moisture content determination in order to study its sedimentation flux and provenance. The depth-age relationship of core MD05-2908 was well constrained by 17 C-14 dating points. The sediments span across the mid-Holocene (6.8 ka B.P.) and have remarkablely high sedimentation rates between 1.8 and 21-2 m/ka, which is well consistent with the modern observations from sediment traps. We identified five 70-200 a periods of abnormally rapid sedimentation events at 6790-6600 a B.P., 5690-5600 a B.P., 4820-4720 a B.P., 1090-880 a B.P., and 260-190 a B.P., during which the highest sedimentation rate is up to 21-2 m/ka. In general, the lithology of the sediments were dominated by silt and clay, associated with less than 5% coarse size fraction (a parts per thousand << 63 mu m). As the most significant sediment source, the Lanyang River in northeastern Taiwan annually deliver about 10Mt materials to the coastal and offshore region of northeast Taiwan, a portion of which could be carried northward by currents toward the study area. Therefore, we concluded that the 5 abnormally rapid sedimentation events may be related to intensified rainfall in Taiwan and thus increased materials to our study area at that time. However, a few extreme-rapid sedimentation events cannot be explained by normal river runoff alone. The large earthquakes or typhoons induced hyperpycnal discharge of fluvial sediment to the ocean may also act as a potential source supply to the Okinawa Trough.
Resumo:
AMS(14)C dating and analysis of grain size, major elements and clay minerals were applied to Core MZ01 from the mud area on the inner shelf of the East China Sea. Based on the environmentally sensitive grain size, clay mineral and major element assemblages, the history of the East Asia winter monsoon since the mid-Holocene could be reconstructed. These three proxies, mean grain size (>9.71 mu m), chemical index of alteration (CIA) and ratio of smectite to kaolinite in particular, show similar fluctuation patterns. Furthermore, 10 extreme values corresponding to the contemporary cooling events could be recognized since the mid-Holocene; these extreme values are likely to have been caused by the strengthening of the East Asia winter monsoon. The cooling events correlated well with the results of the delta O-18 curves of the Dunde ice core and GISP2, which therefore revealed a regional response to global climate change. Four stages of the East Asia winter monsoon were identified, i.e. 8300-6300 a BP, strong and unstable; 6300-3800 a BP, strong but stable; 3800-1400 a BP, weak and unstable; after 1400 a BP, weak but stable.
Resumo:
Geo-ecological transect studies in the pastures of the upper catchment of the HuangHe (99 degrees 30'-100 degrees 00'E/35 degrees 30'-35 degrees 40'N'; 3,000-4,000 in a.s.l., Qinghai province, China) revealed evidence that pastures replace forests. Plot-based vegetation records and fenced grazing exclosure experiments enabled the identification of grazing indicator plants for the first time. The mapping of vegetation patterns of pastures with isolated juniper and Spruce forests raise questions as to the origin of the grasslands, which arc widely classified as "natural" at present. Soil investigations and charcoal fragments of Juniperus (8,153 +/- 63 uncal BP) and Picea (6,665 +/- 59 uncal BP) provide evidence of the wider presence of forests. As temperatures and rainfall records undoubtedly represent a forest climate, it is assumed that the present pastures have replaced forests. Circumstantial evidence arising from investigations into the environmental history of the Holocene effectively substantiates this theory.
Resumo:
Tree-ring analysis of sub-fossil Pinus sylvestris L. and Quercus sp. and their associated sub-fossil insect assemblages from tree rot holes have been used to study a prehistoric forest buried in the basal peats at Tyrham Hall Quarry, Hatfield Moors SSSI, in the Humberhead Levels, eastern England. The site provided a rare opportunity to examine the date, composition, age structure and entomological biodiversity of a mid-Holocene Pinus-dominated forest. The combined approaches of dendrochronology and palaeoentomology have enabled a detailed picture of the forest to be reconstructed, within a precise time frame. The Pinus chronology has been precisely dated to 2921- 2445 BC against the English Quercus master curve and represents the first English Pinus chronology to be dendrochronologically dated. A suite of important xylophilous (wood-loving) beetles that are today very rare and four species that no longer live within the British Isles were also recovered, their disappearance associated with the decline in woodland habitats as well as possible climate change. The sub-fossil insects indicate that the characteristic species of the site's modern-day fauna were already in place 4000 years ago. These findings have important implications in terms of maintaining long-term invertebrate biodiversity of mire sites.
Resumo:
Two cores of mid-Holocene raised-bog deposits from the Netherlands were 14C wiggle-match dated at high precision. Changes in local moisture conditions were inferred from the changing species composition of consecutive series of macrofossil samples. Several wet-shifts were inferred, and these were often coeval with major rises in the D14C archive (probably caused by major declines in solar activity). The use of D14C as a proxy for changes in solar activity is validated. This paper adds to the increasing body of evidence that solar variability forced climatic changes during the Holocene.