16 resultados para microtube


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The viscometer presented in this paper is suit-able for measuring the viscosity of liquids in micro-litre quantities. It consists of a micro-flow experimental system with a thermostat. Using the measurements of the flow rates and pressure drops of a liquid passing through a microtube, the liquid's viscosity can be calculated from on Hagen-Poiseuille theory. After calibration, the viscometer was used to measure viscosities of deionized water and ethyl alcohol at temperatures ranging from 0 to 40 "C. For both test liquids, the relative deviation of the measured values from those quoted in the literature (obtained using other viscometers) was less than 2.6o/o. The relative uncertainty of the experimental system was reduced to +-l.8% using the relative measuring method. Due to the micro-scale of the test section, only a micro-litre quantity of liquid is needed for a test, this is a potential advantage for measurement of bio-liquid viscosities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A linear stability analysis is presented to study the self-organized instabilities of a highly compliant elastic cylindrical shell filled with a viscous liquid and submerged in another viscous medium. The prototype closely mimics many components of micro-or nanofluidic devices and biological processes such as the budding of a string of pearls inside cells and sausage-string formation of blood vessels. The cylindrical shell is considered to be a soft linear elastic solid with small storage modulus. When the destabilizing capillary force derived from the cross-sectional curvature overcomes the stabilizing elastic and in-plane capillary forces, the microtube can spontaneously self-organize into one of several possible configurations; namely, pearling, in which the viscous fluid in the core of the elastic shell breaks up into droplets; sausage strings, in which the outer interface of the mircrotube deforms more than the inner interface; and wrinkles, in which both interfaces of the thin-walled mircrotube deform in phase with small amplitudes. This study identifies the conditions for the existence of these modes and demonstrates that the ratios of the interfacial tensions at the interfaces, the viscosities, and the thickness of the microtube play crucial roles in the mode selection and the relative amplitudes of deformations at the two interfaces. The analysis also shows asymptotically that an elastic fiber submerged in a viscous liquid is unstable for Y = gamma/(G(e)R) > 6 and an elastic microchannel filled with a viscous liquid should rupture to form spherical cavities (pearling) for Y > 2, where gamma, G(e), and R are the surface tension, elastic shear modulus, and radius, respectively, of the fiber or microchannel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Semiconductor Quantum Well (QW) microtubes have been fabricated by strain-induced self assembling technique. Three types of multilayer structures have consisted of GaAs/InxGa1-xAs strained layers containing with various thickness of Monolayers of (GaAs/AlGaAs) QW were grown by Varian Gen II Molecular Beam Epitaxy (MBE) on the GaAs (100) substrate. The shape of the rolled up microtubes provide a clear idea about the formation of three dimensional micro- and nanostructures. Micro-Raman and photoluminescence (PL) studies were performed to the QW microtubes and as compared with their grown area on the GaAs substrate. The results of Raman spectra show the frequency shift of phonon modes measured in tube and compared with the grown area due to residual strain. The PL peaks of the microtube were red-shifted due to the strain effect and transition of bandgap from Type-II to Type-I. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The flow characteristics of liquids in microtubes driven by a high pressure ranging from 1 MPa to 30 MPa are studied in this paper. The diameter of the microtube is from 3 μm to 10 μm and liquids composed of simple small molecules are chosen as the working fluids. The Reynolds number ranges from 0. 1 to 24. The behavior of isopropanol and carbon tetrachloride under high pressure is found different from the prediction from conventional Hagen-Poiseuille (HP) equation. The normalized friction coefficient C* increases significantly with the pressure. From an analysis of the microtube deformation, liquid compressibility, viscous heating and wall slip, it may be seen that the viscosity at high pressure plays an important role here. An exponential function of viscosity vs pressure is introduced into the HP equation to counteract the difference between experimental and theoretical values. However, this difference is not so marked for di-water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The behavior of micro-scale flow is significant for the performance of Micro-Electro-Mechanical- Systems (MEMS) devices. Some experiments about liquid flow through microtubes with diameters about 3similar to20mum are presented here. The liquids used in our experiments include some simple liquids with small molecules, such as non-ion water and several kinds of organic liquids (CCL4, C6H5C2H5 and Isopropanol etc.). The flow rate and the normalized friction cocfficients were measured in micro-flow experimental apparatus. The results show that when the driven pressure varies from 0 to 1Mpa, the flow behaviors in 20mum microtube for both polar and non-polar liquids are in agreement with Hagen-Poiseuille law of the classical theory. It means that N-S equation based on continuous medium still acts well in this case. For higher pressure drop from 1 to 30Mpa, in the microtubes with diameter of 3similar to10mum, the normalized friction coefficients of organic liquids can't keep constant with pressure increases. However the non-ion water reveals different trends.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large-scale uniform Ag microtubes with high length diameter ratios have been first successfully synthesized by a facile approach, using low-cost super fine glass fibers as templates. The samples were characterized by SEM and XRD. The investigations showed that calcining or adding of PEG-1000 and alcohol could greatly improve the mechanical strength of the sample. Especially the products exhibited favorable catalytic properties during the degradation of Rhodamine B by NaBH4. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the measurements of conductivity, I-V curve, and magnetoresistance of a single Au/polyaniline microfiber with a core-shell structure, on which a pair of platinum microleads was attached by focused ion beam. The Au/polyaniline microfiber shows a much higher conductivity (similar to 110 S/cm at 300 K) and a much weaker temperature dependence of resistance [R(4 K)/R(300 K)=5.1] as compared with those of a single polyaniline microtube [sigma(RT)=30-40 S/cm and R(4 K)/R(300 K)=16.2]. The power-law dependence of R(T)proportional to T-beta, with beta=0.38, indicates that the measured Au/polyaniline microfiber is lying in the critical regime of the metal-insulator transition. In addition, the microfiber shows a H-2 dependent positive magnetoresistance at 2, 4, and 6 K.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thin commercial aluminum electrolytic and passed through reactions was obtained with anodic alumina membranes nanopores. These materials have applications in areas recognized electronic, biomedical, chemical and biological weapons, especially in obtaining nanostructures using these membranes as a substrate or template for processing nanowires, nanodots and nanofibers for applications noble. Previous studies showed that the membranes that have undergone heat treatment temperature to 1300° C underwent changes in morphology, crystal structure and optical properties. This aim, this thesis, a study of the heat treatment of porous anodic alumina membranes, in order to obtain and to characterize the behavior changes structures during the crystallization process of the membranes, at temperatures ranging between 300 and 1700° C. It was therefore necessary to mount a system formed by a tubular furnace resistive alumina tube and controlled environment, applying flux with special blend of Ag-87% and 13% N2, in which argon had the role of carrying out the oxygen nitrogen system and induce the closing of the pores during the densification of the membrane. The duration of heat treatment ranged from 60 to 15 minutes, at temperatures from 300 to 1700° C respectively. With the heat treatment occurred: a drastic reduction of porosity, grain growth and increased translucency of the membrane. For the characterization of the membranes were analyzed properties: Physical - thermogravimetric, X-ray diffraction, BET surface area; morphological - SEM, EDS through compositional and, optical absorbance, and transmittance in the UV-VIS, and FTIR. The results using the SEM showed that crystallization has occurred, densification and significant changes in membrane structure, as well as obtaining microtube, the BET analysis showed a decrease in specific surface area of the membranes has to 44.381 m2.g-1 to less than 1.8 m2.g-1 and in the analysis of transmittance and absorbance was found a value of 16.5% in the range of 800 nm, characteristic of the near infrared and FTIR have confirmed the molecular groups of the material. Thus, one can say that the membranes were mixed characteristics and properties which qualify for use in gas filtration system, as well as applications in the range of optical wavelength of the infra-red, and as a substrate of nanomaterials. This requires the continuation and deepening of additional study

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Ciência do Solo) - FCAV

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Subsurface drip irrigation that uses an emitter protection system to avoid its clogging by roots and soil particles may be viable compared to a conventional system. The objective of this work was to evaluate the performance of a system with emitter protection, and to compare the results with a system that uses a conventional emitter for subsurface drip irrigation. In the system with protection an inexpensive materials polyethylene hose, microtube, connector, and a dripper to control the flow rate were used; and, in the conventional system a commercial emitter was used. After 12 months of evaluation, the system with protector showed good performance, with relative average flow rate of 0.97 and 0.98 in pots with and without crop, respectively, showing no clogging problems and lower cost. In conventional system relative flow rate of 0.51 and 0.98 were observed in pots with and without crop, respectively, also clogging degree by roots of 49.22%, and emitters with soil inside was observed. Thus, the use of emitter with protection presented feasibility for subsurface drip irrigation, under conditions used in this research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents closed form solutions for fully developed temperature distribution and entropy generation due to forced convection in microelectromechanical systems (MEMS) in the Slip-flow regime, for which the Knudsen number lies within the range 0.001