983 resultados para microstructural analysis
Resumo:
This article reports a detailed Raman scattering and microstructural characterization of S-rich CuIn(S,Se)2 absorbers produced by electrodeposition of nanocrystalline CuInSe2 precursors and subsequent reactive annealing under sulfurizing conditions. Surface and in-depth resolved Raman microprobe measurements have been correlated with the analysis of the layers by optical and scanning electron microscopy, x-ray diffraction, and in-depth Auger electron spectroscopy. This has allowed corroboration of the high crystalline quality of the sulfurized layers. The sulfurizing conditions used also lead to the formation of a relatively thick MoS2 intermediate layer between the absorber and the Mo back contact. The analysis of the absorbers has also allowed identification of the presence of In-rich secondary phases, which are likely related to the coexistence in the electrodeposited precursors of ordered vacancy compound domains with the main chalcopyrite phase, in spite of the Cu-rich conditions used in the growth. This points out the higher complexity of the electrodeposition and sulfurization processes in relation to those based in vacuum deposition techniques.
Resumo:
A microstructural analysis of silicon-on-insulator samples obtained by high dose oxygen ion implantation was performed by Raman scattering. The samples analyzed were obtained under different conditions thus leading to different concentrations of defects in the top Si layer. The samples were implanted with the surface covered with SiO2 capping layers of different thicknesses. The spectra measured from the as-implanted samples were fitted to a correlation length model taking into account the possible presence of stress effects in the spectra. This allowed quantification of both disorder effects, which are determined by structural defects, and residual stress in the top Si layer before annealing. These data were correlated to the density of dislocations remaining in the layer after annealing. The analysis performed corroborates the existence of two mechanisms that generate defects in the top Si layer that are related to surface conditions during implantation and the proximity of the top Si/buried oxide layer interface to the surface before annealing.
Resumo:
Rationale: Central cannabinoid systems have been implicated in appetite control through the respective hyperphagic and anorectic actions of CB1 agonists and antagonists. The motivational changes underlying these actions remain to be determined, but may involve alterations to food palatability. Objectives: The mode of action of cannabinoids on ingestion was investigated by examining the effects of exogenous and endogenous agonists, and a selective CB1 receptor antagonist, on licking microstructure in rats ingesting a palatable sucrose solution. Methods: Microstructural analyses of licking for a 10% sucrose solution was performed over a range of agonist and antagonist doses administered to non-deprived, male Lister hooded rats. Results: Delta(9)-tetrahydrocannabinol (0.5, 1 and 3 mg/kg) and anandamide (1 mg/kg and 3 mg/kg) significantly increased total number of licks. This was primarily due to an increase in bout duration rather than bout number. There was a nonsignificant increase in total licks following administration of 2-arachidonoyl glycerol (0.2, 1.0 and 2.0 mg/kg), whereas administration of the CB1 antagonist SR141716 (1 mg/kg and 3 mg/kg) significantly decreased total licks. All drugs, with the exception of anandamide, significantly decreased the intra-bout lick rate. An exponential function fitted to the cumulative lick rate curves for each drug revealed that all compounds altered the asymptote of this function without having any marked effects on the exponent. Conclusions: These data are consistent with endocannabinoid involvement in the mediation of food palatability.
Resumo:
Dactylotrochus cervicornis (= Tridacophyllia cervicornis Moseley, 1881), which occurs in Indo-Pacific waters between 73 and 852 m, was originally described as an astraeid but was later transferred to the Caryophylliidae. Assumed to be solitary, this species has no stolons and only one elongated fossa, and is unique among azooxanthellate scleractinians in often displaying extremely long thecal extensions that are septate and digitiform. Based on both molecular phylogenetic analyses (partial mitochondrial CO1 and 16S rDNA, and partial nuclear 28S rDNA) and morphological characteristics, we propose the transfer of D. cervicornis from the Caryophylliidae to the Agariciidae, making it the first extant representative of the latter family that is solitary and from deep water (azooxanthellate). The basal position of D. cervicornis within the agariciids implied by our analyses strengthens the case for inclusion of fossil species that were solitary, such as Trochoseris, in this family and suggests that the ancestor of this scleractinian family, extant members of which are predominantly colonial and zooxanthellate, may have been solitary and azooxanthellate.
Resumo:
Several of OPC paste and concrete specimens, with different mix proportions, were cast against CPF and impermeable formwork (IF) and the profiles of pore structure, microhardness and scratch hardness of the cover zone were established. The chloride ingress and the depth of carbonation of the surface zone of concrete cast against CPF and IF were investigated. The main mechanisms controlling the ECR processes and the factors affecting such treatment were critically reviewed. Subsequently, as a means of restoring passivation of steel embedded in carbonated concrete, such HCP specimens were subjected to ECR. The influence of ECR on the chemistry of the pore solution and the microstructure of the surface and the steel/cement past interface zones were also studied. The main findings of this investigation were as follows: (a) The thickness of the microstructure gradient of cover concrete is significantly decreased with increasing period of water curing but is relatively unaffected by curing temperature, w/e ratio and the use of cement replacement materials. (b) The scratch hardness technique was shown to be potentially useful for characterising the microstructure and microhardness gradients of the surface zone. (c) A relationship between the microstructure gradient and mass transport properties of the surface zone was established. (d) The use of CPF resulted in a significant reduction in porosity of both the cement paste matrix and the aggregate/cement paste transition zone, and a marked improvement in the resistance of the surface zone to carbonation and the ingress of chloride ions. (e) The ECR treatment resulted in a marked densification of the pore structure and in changes to the pore solution chemistry and the cement phases of near-surface and steel/cement paste transition zones. This effect was more pronounced with current density, period of treatment and particularly with the use of sodium phosphate as an electrolyte.
Resumo:
This paper aims to study evolution of increase, distribution and classification of pits in 310S austenitic stainless steels obtained in the state as-received and heat-treated under different exposure times in saline. This work applicability has been based on a technique development for morphologic characterization of localized corrosion associated with description aspects of shapes, size and population-specific parameters. Methodology has been consisted in the following steps: specimens preparation, corrosion tests via salt spray in different conditions, microstructural analysis, pits profiles analysis and images analysis, digital processing and image analysis in order to characterize the pits distribution, morphology and size. Results obtained in digital processing and profiles image analysis have been subjected to statistical analysis using median as parameter in the alloy as received and treated. The alloy as received displays the following morphology: hemispheric pits> transition region A> transition region B> irregular> conic. The pits amount in the treated alloy at each exposure time is: transition region B> hemispherical> transition region A> conic> irregular.
Resumo:
The purpose of this paper was to study the main effects of the turning in the superficial integrity of the duplex stainless steel ASTM A890-6A. The tests were conducted on a turning centre with carbide tools and the main entrances variables were: tool material class, feed rate, cutting depth, cutting speed and cutting fluid utilisation. The answers were analysed: microstructural analysis by optical microscopy and x-ray diffraction, cutting forces measurements by a piezoelectric dynamometer, surface roughness, residual stress by x-ray diffraction technique and the microhardness measurements. The results do not show any changes in the microstructural of the material, even when the greater cutting parameters were used. The smaller feed rate (0.1 mm/v), smaller cutting speed (110 m/min) and the greater cutting depth (0.5 mm) provided the smaller values for the tensile residual stress, the smaller surface roughness and the greater microhardness.
Resumo:
This paper reports the microstructural analysis of S-rich CuIn(S,Se)2 layers produced by electrodeposition of CuInSe2 precursors and annealing under sulfurizing conditions as a function of the temperature of sulfurization. The characterization of the layers by Raman scattering, scanning electron microscopy, Auger electron spectroscopy, and XRD techniques has allowed observation of the strong dependence of the crystalline quality of these layers on the sulfurization temperature: Higher sulfurization temperatures lead to films with improved crystallinity, larger average grain size, and lower density of structural defects. However, it also favors the formation of a thicker MoS2 interphase layer between the CuInS2 absorber layer and the Mo back contact. Decreasing the temperature of sulfurization leads to a significant decrease in the thickness of this intermediate layer and is also accompanied by significant changes in the composition of the interface region between the absorber and the MoS2 layer, which becomes Cu rich. The characterization of devices fabricated with these absorbers corroborates the significant impact of all these features on device parameters as the open circuit voltage and fill factor that determine the efficiency of the solar cells.
Resumo:
Focal epilepsy is increasingly recognized as the result of an altered brain network, both on the structural and functional levels and the characterization of these widespread brain alterations is crucial for our understanding of the clinical manifestation of seizure and cognitive deficits as well as for the management of candidates to epilepsy surgery. Tractography based on Diffusion Tensor Imaging allows non-invasive mapping of white matter tracts in vivo. Recently, diffusion spectrum imaging (DSI), based on an increased number of diffusion directions and intensities, has improved the sensitivity of tractography, notably with respect to the problem of fiber crossing and recent developments allow acquisition times compatible with clinical application. We used DSI and parcellation of the gray matter in regions of interest to build whole-brain connectivity matrices describing the mutual connections between cortical and subcortical regions in patients with focal epilepsy and healthy controls. In addition, the high angular and radial resolution of DSI allowed us to evaluate also some of the biophysical compartment models, to better understand the cause of the changes in diffusion anisotropy. Global connectivity, hub architecture and regional connectivity patterns were altered in TLE patients and showed different characteristics in RTLE vs LTLE with stronger abnormalities in RTLE. The microstructural analysis suggested that disturbed axonal density contributed more than fiber orientation to the connectivity changes affecting the temporal lobes whereas fiber orientation changes were more involved in extratemporal lobe changes. Our study provides further structural evidence that RTLE and LTLE are not symmetrical entities and DSI-based imaging could help investigate the microstructural correlate of these imaging abnormalities.
Resumo:
La present tesi proposa una metodología per a la simulació probabilística de la fallada de la matriu en materials compòsits reforçats amb fibres de carboni, basant-se en l'anàlisi de la distribució aleatòria de les fibres. En els primers capítols es revisa l'estat de l'art sobre modelització matemàtica de materials aleatoris, càlcul de propietats efectives i criteris de fallada transversal en materials compòsits. El primer pas en la metodologia proposada és la definició de la determinació del tamany mínim d'un Element de Volum Representatiu Estadístic (SRVE) . Aquesta determinació es du a terme analitzant el volum de fibra, les propietats elàstiques efectives, la condició de Hill, els estadístics de les components de tensió i defromació, la funció de densitat de probabilitat i les funcions estadístiques de distància entre fibres de models d'elements de la microestructura, de diferent tamany. Un cop s'ha determinat aquest tamany mínim, es comparen un model periòdic i un model aleatori, per constatar la magnitud de les diferències que s'hi observen. Es defineix, també, una metodologia per a l'anàlisi estadístic de la distribució de la fibra en el compòsit, a partir d'imatges digitals de la secció transversal. Aquest anàlisi s'aplica a quatre materials diferents. Finalment, es proposa un mètode computacional de dues escales per a simular la fallada transversal de làmines unidireccionals, que permet obtenir funcions de densitat de probabilitat per a les variables mecàniques. Es descriuen algunes aplicacions i possibilitats d'aquest mètode i es comparen els resultats obtinguts de la simulació amb valors experimentals.
Resumo:
Ti-6Al-7Nb alloys are being evaluated for biomedical applications, in substitution of the more conventional Ti-6Al-7V. Both types of alloys present a microstructure containing the alpha and the beta phases, which result in good compromise for mechanical applications. In the present work Ti-6Al-7Nb alloys were processed by High Pressure Torsion (HPT), varying the number of revolutions and thus the total imposed strain. X-Ray Diffraction (XRD) results revealed the formation of different crystallographic textures in samples subjected to HPT. Microhardness distribution, across the diameters of the disks, is rather homogeneous for all samples, with higher values for those subjected to 03 and 05 turns. Transmission electron microscopy (TEM) micrographs have showed that an ultra-fine grained microstructure was obtained in all the samples.
Resumo:
Thermal transformations on microalloyed steels can produce multiphase microstructures with different amounts of ferrite, martensite, bainite and retained austenite. These different phases, with distinct morphologies, are determinant of the mechanical behavior of the steel and can, for instance, affect the crack path or promote crack shielding, thus resulting in changes on its propagation rate under cyclic loading. The aim of the present work is to evaluate the effects of microstructure on the tensile strength and fatigue crack growth (FCG) behaviour of a 0.08%C-1,5%Mn (wt. pct.) microalloyed steel, recently developed by a Brazilian steel maker under the designation of RD480. This steel is being considered as a promising alternative to replace low carbon steel in wheel components for the automotive industry. Various microstructural conditions were obtained by means of heat treatments followed by water quench, in which the material samples were kept at the temperatures of 800, 950 and 1200 °C. In order to describe the FCG behavior, two models were tested: the conventional Paris equation and a new exponential equation developed for materials showing non-linear FCG behavior. The results allowed correlating the tensile properties and crack growth resistance to the microstructural features. It is also shown that the Region II FCG curves of the dual and multiphase microstructural conditions present crack growth transitions that are better modeled by dividing them in two parts. The fracture surfaces of the fatigued samples were observed via scanning electron microscopy in order to reveal the fracture mechanisms presented by the various material conditions. © 2010 Published by Elsevier Ltd.
Resumo:
The most important property of austenitic stainless steels is corrosion resistance. In these steels, the transition between paramagnetic and ferromagnetic conditions occurs at low temperatures. Therefore, the use of austenitic stainless steels in conditions in which ferromagnetism absence is important can be considered. On the other hand, the formation of strain-induced martensite is detected when austenitic stainless steels are deformed as well as machined. The strain-induced martensite formed especially in the machining process is not uniform through the chip and its formation can also be related to the Md temperature. Therefore, both the temperature distribution and the gradient during the cutting and chip formation are important to identify regions in which martensite formation is propitiated. The main objective here is evaluate the strain-induced martensite formation throughout machining by observing microstructural features and comparing these to thermal results obtained through finite element method analysis. Results show that thermal analysis can give support to the martensite identified in the microstructural analysis.