981 resultados para microsatellite dna
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
trabajo realizado por Medina Alcaraz, C., Castro, J.J., Sosa, P. A.
Resumo:
Chromosomal forms of Anopheles gambiae, given the informal designations Bamako, Mopti, and Savannah, have been recognized by the presence or absence of four paracentric inversions on chromosome 2. Studies of karyotype frequencies at sites where the forms occur in sympatry have led to the suggestion that these forms represent species. We conducted a study of the genetic structure of populations of An. gambiae from two villages in Mali, west Africa. Populations at each site were composed of the Bamako and Mopti forms and the sibling species, Anopheles arabiensis. Karyotypes were determined for each individual mosquito and genotypes at 21 microsatellite loci determined. A number of the microsatellites have been physically mapped to polytene chromosomes, making it possible to select loci based on their position relative to the inversions used to define forms. We found that the chromosomal forms differ at all loci on chromosome 2, but there were few differences for loci on other chromosomes. Geographic variation was small. Gene flow appears to vary among different regions within the genome, being lowest on chromosome 2, probably due to hitchhiking with the inversions. We conclude that the majority of observed genetic divergence between chromosomal forms can be explained by forces that need not involve reproductive isolation, although reproductive isolation is not ruled out. We found low levels of gene flow between the sibling species Anopheles gambiae and Anopheles arabiensis, similar to estimates based on observed frequencies of hybrid karyotypes in natural populations.
Resumo:
The genetic relationships of colony members in the ant Myrmica tahoensis were determined on the basis of highly polymorphic microsatellite DNA loci. These analyses show that colonies fall into one of two classes. In roughly half of the sampled colonies, workers and female offspring appear to be full sisters. The remaining colonies contain offspring produced by two or more queens. Colonies that produce female sexuals are always composed of highly related females, while colonies that produce males often show low levels of nestmate relatedness. These results support theoretical predictions that workers should skew sex allocation in response to relatedness asymmetries found within colonies. The existence of a relatedness threshold below which female sexuals are not produced suggests a possible mechanism for worker perception of relatedness. Two results indicate that workers use genetic cues, not queen number, in making sex-allocation decisions. (i) The number of queens in a colony was not significantly correlated with either the level of relatedness asymmetry or the sex ratio. (ii) Sex-ratio shifts consistent with a genetically based mechanism of relatedness assessment were seen in an experiment involving transfers of larvae among unrelated nests. Thus workers appear to make sex-allocation decisions on the basis of larval cues and appear to be able to adjust sex ratios long after egg laying.
Resumo:
Funding This work was supported by the HADEEP projects, funded by the Nippon Foundation, Japan (2009765188), the Natural Environmental Research Council, UK (NE/E007171/1) and the Total Foundation, France. We acknowledge additional support from the Marine Alliance for Science and Technology for Scotland (MASTS) funded by the Scottish Funding Council (Ref: HR09011) and contributing institutions. We also acknowledge support from the Leverhulme Trust to SBP. Additional sea time was supported by NIWA’s ‘Impact of Resource Use on Vulnerable Deep-Sea Communities’ project (CO1_0906)
Resumo:
We tried to amplify mitochondrial, microsatellite and amelogenin loci in DNA from fecal samples of a wild Mazama americana population. Fifty-two deer fecal samples were collected from a 600-ha seasonal semideciduous forest fragment in a subtropical region of Brazil (21°20′, 47°17′W), with the help of a detection dog; then, stored in ethanol and georeferenced. Among these samples 16 were classified as fresh and 36 as non-fresh. DNA was extracted using the QIAamp® DNA Stool Mini Kit. Mitochondrial loci were amplified in 49 of the 52 samples. Five microsatellite loci were amplified by PCR; success in amplification varied according to locus size and sample age. Successful amplifications were achieved in 10/16 of the fresh and in 13/36 of the non-fresh samples; a negative correlation (R = -0.82) was found between successful amplification and locus size. Amplification of the amelogenin locus was successful in 22 of the 52 samples. The difficulty of amplifying nuclear loci in DNA samples extractedfrom feces collected in the field was evident. Some methodological improvements, including collecting fresh samples, selecting primers for shorter loci and quantifying the extracted DNA by real-time PCR, are suggested to increase amplification success in future studies. © FUNPEC-RP.
Resumo:
In this study, 15 microsatellite DNA loci used in comparative tests by the International Society for Animal Genetics were applied to the evaluation of genetic diversity and management, and the efficiency of paternity testing in Marajoara horses and Puruca ponies from the Marajó Archipelago. Based on the genotyping of 93 animals, mean allelic diversity was estimated as 9.14 and 7.00 for the Marajoara and Puruca breeds, respectively. While these values are similar to those recorded in most European breeds, mean levels of heterozygosity were much lower (Marajoara 49%, Puruca 40%), probably as a result of high levels of inbreeding in the Marajó populations. The mean informative polymorphic content of this 15-marker system was over 50% in both breeds, and was slightly higher in the Marajoara horses. The discriminative power and exclusion probabilities derived from this system were over 99% for both populations, emphasizing the efficacy of these markers for paternity testing and genetic management in the two breeds.
Resumo:
The objective of this work was to characterize the grape germplasm in Santa Catarina, Brazil, using microsatellite DNA markers (simple sequence repeats - SSR). The DNA samples were collected from leaves and shoots of accessions of public and private collections from the counties Urussanga, Nova Trento, Rodeio, São Joaquim, Campos Novos, Videira, and Água Doce. Ten SSR loci (VVS2, VVMD5, VVMD7, VVMD27, VrZAG62, VrZAG79, VVMD25, VVMD28, VVMD31, and VVMD32) were analysed by capillary electrophoresis. Molecular profiling was conducted for 190 grapevines (European, American, and hybrids), and 67 genotypes were obtained. The data were compared with each other and with those from the literature and from online databases, in order to identify varieties and discover cases of synonymy and homonymy. Forty molecular profiles corresponded to known varieties, while 27 genotypes were described for the first time. The existence of typical germplasm composed mainly of American and hybrid varieties is an important finding for local viticulture. Applications of the results rely on quality control and certification at the nursery level. Increasing precision in the characterization of grapevine genotypes may help breeding programs.
Resumo:
Fourteen polymorphic microsatellite DNA markers derived from the draft genome sequence of Rhizoctonia solani anastomosis group 3 (AG-3), strain Rhs 1AP, were designed and characterized from the potato-infecting soil fungus R. solani AG-3. All loci were polymorphic in two field populations collected from Solanum tuberosum and S. phureja in the Colombian Andes. The total number of alleles per locus ranged from two to seven, while gene diversity (expected heterozygosity) varied from 0.11 to 0.81. Considering the variable levels of genetic diversity observed, these markers should be useful for population genetic analyses of this important dikaryotic fungal pathogen on a global scale.
Resumo:
The microsatellite loci FCA045, FCA077, FCA008, and FCA096 are highly variable molecular markers which were used to determine the genetic diversity in 148 captive Leopardus sp. The PCR-amplified products of microsatellite loci were characterized in ABI Prism 310 Genetic Analyzer. Allele numbers, heterozygosity, polymorphism information content, exclusive allele number, and shared alleles were calculated. Sixty-five alleles were found and their sizes ranged from 116 to 216 bp in four microsatellite loci. The heterozygosity ranged from 0.36 to 0.81 in Leopardus pardalis, 0.57 to 0.67 in L. tigrinus and 0.80 to 0.92 in L. wiedii. The polymorphism information content was from 0.80 to 0.88 in L. pardalis, 0.76 to 0.88 in L. tigrinus and 0.77 to 0.90 in L. wiedii. The margay (L. wiedii) showed the highest index of polymorphism among the three species in this study. These results imply that microsatellite DNA markers can help in the study of the genetic diversity of Leopardus specimens. ©FUNPEC-RP.
Resumo:
We analyze the within- and between-population dynamics of the distribution of the number of repeats at multiple microsatellite DNA loci subject to stepwise mutation. Analytical expressions for moments up to the fourth order within a locus and the variance of between-locus variance at mutation-drift equilibrium have been obtained. These statistics may be used to test the appropriateness of the one-step mutation model and to detect between-locus variation in the mutation rate. Published data are compatible with the one-step mutation model, although they do not reject the two-step model. Using both multinomial sampling and diffusion approximations for the analysis of the genetic distance introduced by Goldstein et al. [Goldstein, D. B., Linares, A. R., Cavalli-Sforza, L. L. & Feldman, M. W. (1995) Proc. Natl. Acad. Sci. USA 92, 6723-6727], we show that this distance follows a chi 2 distribution with degrees of freedom equal to the number of loci when there is no variation in mutation rates among the loci. In the presence of such variation, the variance of the distance is obtained. We conclude that the number of microsatellite loci required for the construction of phylogenetic trees with reliable branch lengths may be several hundred. Also, mutations that change repeat scores by several units, even though extremely rare, may dramatically influence estimates of population parameters.
Resumo:
Comparisons among loci with differing modes of inheritance can reveal unexpected aspects of population history. We employ a multilocus approach to ask whether two types of independently assorting mitochondrial DNAs (maternally and paternally inherited: F- and M-mtDNA) and a nuclear locus (ITS) yield concordant estimates of gene flow and population divergence. The blue mussel, Mytilus edulis, is distributed on both North American and European coastlines and these populations are separated by the waters of the Atlantic Ocean. Gene flow across the Atlantic Ocean differs among loci, with F-mtDNA and ITS showing an imprint of some genetic interchange and M-mtDNA showing no evidence for gene flow. Gene flow of F-mtDNA and ITS causes trans-Atlantic population divergence times to be greatly underestimated for these loci, although a single trans-Atlantic population divergence time (1.2 MYA) can be accommodated by considering all three loci in combination in a coalescent framework. The apparent lack of gene flow for M-mtDNA is not readily explained by different dispersal capacities of male and female mussels. A genetic barrier to M-mtDNA exchange between North American and European mussel populations is likely to explain the observed pattern, perhaps associated with the double uniparental system of mitochondrial DNA inheritance.