27 resultados para metaphosphate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dialkyl (3-aryl-l,2,4-oxadiazol-5-yl)phosphonate6sa -h have been obtained by 1,3-dipolar cycloaddition of arenenitrile oxides 5a-f to dialkyl phosphorocyanidates (4a and 4b) in yields ranging between 30% and 58%. A standardized method for obtaining cyanidates 4a and 4b has been established. The diethyl thiophosphorocyanidate (4c) is less reactive than 4a and 4b, only the 3-(4'-nitrophenyl) derivative 6i being obtainable. While the IR and NMFt spectra of 6a-i were unexceptional, their UV spectra showed evidence of conjugative interaction in high degrees between the phosphonate and heterocyclic moieties as well as a varying conjugative interaction between the heterocyclic and aryl moieties. The oxadiazoles 6a-h are thermally labile and yield trialkyl phosphates 7 as the only identifiable products. A mechanism based on the intermediacy of monomeric alkyl metaphosphate 11 in the formation of trialkyl phosphate was postulated, and supportive evidence in the form of trapping the metaphosphate with acetophenone has been obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the synthesis and structure of Barium sulfate nanoparticles by precipitation method in the presence of water soluble inorganic stabilizing agent, sodium hexametaphosphate, (NaPO3)(6). The structural parameters were refined by the Rietveld refinement method using powder X-ray diffraction data. Barium sulfate nanoparticles were crystallized in the orthorhombic structure with space group Pbnm (No. 62) having the lattice parameters a = 7.215(1) (angstrom), b = 8.949(1) (angstrom) and c = 5.501 (1) (angstrom) respectively. Transmission electron microscopy study reveals that the nanoparticles are size range, 30-50 nm. Fourier transform infrared spectra showed distinct absorption due to the SO42- moiety at 1115 and 1084 cm(-1) indicating formation of barium sulfate nanoparticles free from the phosphate group from the stabilizer used in the synthesis. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy transfer processes were studied in two sets of Yb3+ and Tm3+ co-doped sodium-metaphosphate glasses, prepared in air and nitrogen atmospheres. Using Forster, Dexter, and Miyakawa theoretical models, the energy transfer parameters were calculated. The main ion-ion energy transfer processes analyzed were energy migration among Yb3+ ions, cross-relaxations between Yb3+ and Tm3+ ions, and interactions with OH- radicals. The results indicated that Yb -> Tm energy transfer favors 1.8 mu m emissions, and there is no evidence of concentration quenching up to 2% Tm2O3 doping. As expected, samples prepared in nitrogen atmosphere present higher fluorescence quantum efficiency than those prepared in air, and this feature is specially noted in the near-infrared region, where the interaction with the OH- radicals is more pronounced. (c) 2007 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bonding properties of cations in phosphate glasses determine many short- and medium-range structural features in the glass network, hence influencing bulk properties. In this work, Pb-Al-metaphosphate glasses (1 - x)Pb-(PO(3))(2)center dot xAI(PO(3))(3) with 0 <= - x <= 1 were analyzed to determine the effect of the substitution of Pb by Al on the glass structure in the metaphosphate composition. The glass transition temperature and density were measured as a function of the Al concentration. The vibrational and structural properties were probed by Raman spectroscopy and nuclear magnetic resonance of (31)P, (27)Al, and (207)Pb. Aluminum incorporates homogeneously in the glass creating a stiffer and less packed network. The average coordination number for Al decreases from 5.9 to 5.0 as x increases from 0.1 to 1, indicating more covalent Al-O bonds. The coordination number of Pb in these glasses is greater than 8, showing an increasing ionic behavior for compositions richer in Al. A quantitative analysis of the phosphate speciation shows definite trends in the bonding of AlO(n) groups and phosphate tetrahedra. In glasses with x < 0.48, phosphate groups share preferentially only one nonbridging O corner with an AlO(n) coordination polyhedron. For x > 0.48 more than one nonbridging O can be linked to AlO(n) polyhedra. There is no corner sharing of O between AlO(n) and PbO(n) polyhedra nor between AlO(n) themselves throughout the compositional range. The PbO(n) coordination polyhedra show considerable nonbridging O sharing, with each O participating in the coordination sphere of at least two Pb. The bonding preferences determined for Al are consistent with the behavior observed in Na-Al and Ca-Al metaphosphates, indicating this may be a general behavior for ternary phosphate glasses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potassium aluminum phosphate (KAP) glasses in the system xKPO(3)-(100-x)AI(PO3)3 with x = 10, 30 and 50 mol% were prepared in the metaphosphate composition. The glasses were doped with MnO2 and their thermoluminescent (TL) response was investigated. Raman spectra showed that these glasses did not undergo structural changes with the substitution of manganese ions. The glass composition x = 50 mol% doped with 1.0 mol% of MnO2 presented the best TL response. The material displayed good sensitivity for gamma-rays, X-rays and UV light. The emission curves exhibited two TL peaks, one at a low temperature (similar to 150 degrees C) and the other at a high temperature (similar to 365 degrees C), whose positions were dependent on the type of exciting radiation applied. The results of the present study indicated that the high temperature peak is a good candidate for TL dosimetric investigations. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anelastic spectroscopy (internal friction and the dynamic modulus) was measured by means of a torsion pendulum at 3-12 Hz, in the range of 100-300 K, for a KAP metaphosphate glass. Two thermally activated internal friction peaks appeared at ∼190 and ∼250 K. These peaks were attributed to the behavior of potassium ions (high temperature) and to hydrogen (low temperature). Dynamic modulus showed a gradual decrease with increasing temperature in the range studied for all compositions. © 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two structural properties in mixed alkali metal phosphate glasses that seem to be crucial to the development of the mixed ion effect in dc conductivity were systematically analyzed in Na mixed metaphosphates: the local order around the mobile species, and their distribution and mixing in the glass network. The set of glasses considered here, Na1-xMxPO3 with M = Li, Ag, K, Rb, and Cs and 0 <= x <= 1, encompass a broad degree of size mismatch between the mixed cation species. A comprehensive solid-state nuclear magnetic resonance study was carried out using P-31 MAS, Na-23 triple quantum MAS, Rb-87 QCPMG, P-31-Na-23 REDOR, Na-23-Li-7 and Li-7-Li-6 SEDOR, and Na-23 spin echo decay. It was observed that the arrangement of P atoms around Na in the mixed glasses was indistinguishable from that observed in the NaPO3 glass. However, systematic distortions in the local structure of the 0 environments around Na were observed, related to the presence of the second cation. The average Na-O distances show an expansion/compression When Na+ ions are replaced by cations with respectively smaller/bigger radii. The behavior of the nuclear electric quadrupole coupling. constants indicates that this expansion reduces the local symmetry, while the compression produces the opposite effect These effects become marginally small when the site mismatch between the cations is small, as in Na-Ag mixed glasses. The present study confirms the intimate mixing of cation species at the atomic scale, but clear deviations from random mixing were detected in systems with larger alkali metal ions (Cs-Na, K-Na, Rb-Na). In contrast, no deviations from the statistical ion mixture were found in the systems Ag-Na and Li-Na, where mixed cations are either of radii comparable to (Ag+) or smaller than (Li+) Na+. The set of results supports two fundamental structural features of the models proposed to explain the mixed ion effect: the. structural specificity of the sites occupied by each cation species and their mixing at the atomic scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rate of solvolysis of p-nitrophenyl phosphate (PNPP) dianion in DMSO/water strongly decreases by increasing water concentration. Addition of linear alcohols (methanol, propanol, butanol, pentanol, and hexanol) at constant DMSO/water molar ratio produced an even sharper rate decrease. Alkyl phosphate formation, resulting from PNPP solvolysis in ternary DMSO/water/alcohol mixtures, increased with alcohol concentration and was essentially temperature independent. Methanol and hexanol were the poorest nucleophiles under all conditions. Activation energies and enthalpies for solvolysis in ternary mixtures were similar and entropies varied with alcohol concentration. Taken together these results can be best interpreted in terms of a dissociative mechanism with the intervention of metaphosphate. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: In the present study, we consider mechanical properties of phosphate glasses under high temperatureinduced and under friction-induced cross-linking, which enhance the modulus of elasticity. Design/methodology/approach: Two nanomechanical properties are evaluated, the first parameter is the modulus of elasticity (E) (or Young's modulus) and the second parameter is the hardness (H). Zinc meta-, pyro - and orthophosphates were recognized as amorphous-colloidal nanoparticles were synthesized under laboratory conditions and showed antiwear properties in engine oil. Findings: Young's modulus of the phosphate glasses formed under high temperature was in the 60-89 GPa range. For phosphate tribofilm formed under friction hardness and the Young's modulus were in the range of 2-10 GPa and 40-215 GPa, respectively. The degree of cross-linking during friction is provided by internal pressure of about 600 MPa and temperature close to 1000°C enhancing mechanical properties by factor of 3 (see Fig 1). Research limitations/implications: The addition of iron or aluminum ions to phosphate glasses under high temperature - and friction-induced amorphization of zinc metaphosphate and pyrophosphate tends to provide more cross-linking and mechanically stronger structures. Iron and aluminum (FeO4 or AlO4 units), incorporated into phosphate structure as network formers, contribute to the anion network bonding by converting the P=O bonds into bridging oxygen. Future work should consider on development of new of materials prepared by solgel processes, eg., zinc (II)-silicic acid. Originality/value: This paper analyses the friction pressure-induced and temperature–induced the two factors lead phosphate tribofilm glasses to chemically advanced glass structures, which may enhance the wear inhibition. Adding the coordinating ions alters the pressure at which cross-linking occurs and increases the antiwear properties of the surface material significantly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gels of various composition containing SiO2, Al2O3, and P2O5 have been investigated by employing high resolution magic-angle-spinning (MAS) 27Al, 29Si, and 31P NMR spectroscopy. Changes occurring in the NMR spectra as the gels are progressively heated have been examined to understand the nature of structural changes occurring during the crystallization of the gels. 27Al resonance is sensitive to changes in the coordination number even when the Al concentration is as low as 1 mol%. As the percentage of Al increases, the hydroxyl groups tend to be located on the Al sites while Si remains as SiO4/2 (Q4). Mullite is the major phase formed at higher temperature in the aluminosilicate gels. In the case of the silicophosphate gels, Si is present in the form of Q4 and Q3 species. There is a change in the coordination of Si from four to six as the gel is heated. The formation of six-coordinated Si is facilitated even at lower temperatures (~673 K) when the P2O5 content is high. The phosphorus atoms present as orthophosphoric acid units in the xerogels change over to metaphosphate-like units as the gel is heated to higher temperatures. In aluminosilicophosphates, Si is present as Q4 and Q3 species while P is present as metaphosphate units; Al in these gels seems to be inducted into the tetrahedral network positions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

he local order around molybdenum and tungsten atoms in various sodium molybdophosphate and sodium tungstophosphate glasses has been investigated using extended X-ray absorption fine structure (EXAFS). Both molybdenum and tungsten atoms are present in six-coordinated environment in these glasses. Magic angle spinning nuclear magnetic resonance (MAS NMR) of P-31 suggests that metaphosphate or neutral [POO3/2] groups are present in these glasses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluorophosphate glass with 4 mol.% ErF3 content was prepared. The different scanning calorimetry was conducted. Raman spectrum, infrared transmission spectrum, absorption spectrum were measured. Fluorescence spectrum and lifetime of emission around 1.53 mu m were measured under 970 nm laser diode excitation. The metaphosphate content in the composition is limited, but the maximum phonon energy of glass amounts to 1290 cm- 1, and is comparatively high. The full width at half maximum is about 56 nm, and is wider than for most of the materials investigated. The measured lifetime of I-4(13/2) -> I-4(15/2) transition, contributed by the high phonon energy, inefficient interaction of Er3+ ions, and low water content, amounts to no less than 7.36 ms though the Er3+ concentration is high. This work might provide useful information for the development of compact optical devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FSodium phosphate tellurite glasses in the system (NaPO3)(x)(TeO2)(1-x) were prepared and structurally characterized by thermal analysis, vibrational spectroscopy, X-ray photoelectron spectroscopy (XPS) and a variety of complementary solid-state nuclear magnetic resonance (NMR) techniques. Unlike the situation in other mixed-network-former glasses, the interaction between the two network formers tellurium oxide and phosphorus oxide produces no new structural units, and no sharing of the network modifier Na2O takes place. The glass structure can be regarded as a network of interlinked metaphosphate-type P(2) tetrahedral and TeO4/2 antiprismotic units. The combined interpretation of the O 1s XPS data and the P-31 solid-state NMR spectra presents clear quantitative evidence for a nonstatistical connectivity distribution. Rather the formation of homootomic P-O-P and Te-O-Te linkages is favored over mixed P-O-Te connectivities. As a consequence of this chemical segregation effect, the spatial sodium distribution is not random, as also indicated by a detailed analysis of P-31/No-23 rotational echo double-resonance (REDOR) experiments. ACHTUNGTRENUNG(TeO2)1 x were prepared and structurally characterized by thermal analysis,vibrat ional spectroscopy,X-ray photoelectron spectroscopy (XPS) and a variety of complementary solid-state nuclear magnetic resonance (NMR) techniques. Unlike the situation in other mixed-network-former glasses,the interaction between the two network formers tellurium oxide and phosphorus oxide produces no new structural units,and no sharing of the network modifier Na2O takes place. The glass structure can be regarded as a network of interlinked metaphosphate-type P(2) tetrahedral and TeO4/2 antiprismatic units. The combined interpretation of the O 1s XPS data and the 31P solid-state NMR spectra presents clear quantitative evidence for a nonstatistical connectivity distribution. Rather,the formation of homoatomic P O P and Te O Te linkages is favored over mixed P O Te connectivities. As a consequence of this chemical segregation effect,the spatial sodium distribution is not random,as also indicated by a detailed analysis of 31P/23Na rotational echo double-resonance (REDOR) experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compositional influences on the spectroscopic properties of Yb3+ and the structural variations with the introduction of YbF3 were studied in fluorophosphate glasses. Emission cross-section (sigma(emi)) and gain coefficient (sigma(emi) x tau(f)) were calculated which exhibit maximum at RF2 = 33 mol%. YbF3 has an important effect on the glass forming ability of fluorophosphate glasses when RF2 is over 36 mol%. The study of Raman spectra showed big differences on the glass structure between non-Yb3+ and Yb3+ -doped glasses. The main building units in Yb3+-doped samples are metaphosphate groups, pyrophosphate groups (P-2(O,F)(7), PO3F), Al[F-6] +Al[O,F](6) and F3Al-O-AlF3 while those of the non-Yb3+-doped glasses are monophosphate group P(O,F)(4), little pyrophosphate group, Al[F-4] + Al[F-6] + Al[O,F](4) + Al[O,F](6) and F3Al-O-AlF3, which means Yb3+ ions contribute to a better glass polymerization and network uniformity. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From Raman and IR spectra, obvious differences of the glass structure were observed in non-Yb3+-doped and Yb3+ -doped fluorophosphate glasses. Results showed that Yb3+ ions can induce, in a better glass, polymerization and network uniformity. Compared with the monophosphate-mastered Yb3+-free glass, Yb3+-doped glass has a pyrophosphate environment. The main building blocks in Yb3+ -doped samples are metaphosphate groups, pyrophosphate groups (P-2(O,F)(7),PO3F), Al[F-6]+Al[O,F](6) and F3Al-O-AlF3 while those of the Yb3+ -free glasses are monophosphate groups P(O,F)(4), little pyrophosphate groups, Al[F-4]+Al[F-6]+Al[O,F](4)+Al[O,F](6) and F3Al-O-AlF3. The DSC analysis also showed a slight increase in crystallization stability. (c) 2005 Elsevier B.V. All rights reserved.