979 resultados para mesh: Biological Models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Sitting between your past and your future doesn't mean you are in the present. Dakota Skye Complex systems science is an interdisciplinary field grouping under the same umbrella dynamical phenomena from social, natural or mathematical sciences. The emergence of a higher order organization or behavior, transcending that expected of the linear addition of the parts, is a key factor shared by all these systems. Most complex systems can be modeled as networks that represent the interactions amongst the system's components. In addition to the actual nature of the part's interactions, the intrinsic topological structure of underlying network is believed to play a crucial role in the remarkable emergent behaviors exhibited by the systems. Moreover, the topology is also a key a factor to explain the extraordinary flexibility and resilience to perturbations when applied to transmission and diffusion phenomena. In this work, we study the effect of different network structures on the performance and on the fault tolerance of systems in two different contexts. In the first part, we study cellular automata, which are a simple paradigm for distributed computation. Cellular automata are made of basic Boolean computational units, the cells; relying on simple rules and information from- the surrounding cells to perform a global task. The limited visibility of the cells can be modeled as a network, where interactions amongst cells are governed by an underlying structure, usually a regular one. In order to increase the performance of cellular automata, we chose to change its topology. We applied computational principles inspired by Darwinian evolution, called evolutionary algorithms, to alter the system's topological structure starting from either a regular or a random one. The outcome is remarkable, as the resulting topologies find themselves sharing properties of both regular and random network, and display similitudes Watts-Strogtz's small-world network found in social systems. Moreover, the performance and tolerance to probabilistic faults of our small-world like cellular automata surpasses that of regular ones. In the second part, we use the context of biological genetic regulatory networks and, in particular, Kauffman's random Boolean networks model. In some ways, this model is close to cellular automata, although is not expected to perform any task. Instead, it simulates the time-evolution of genetic regulation within living organisms under strict conditions. The original model, though very attractive by it's simplicity, suffered from important shortcomings unveiled by the recent advances in genetics and biology. We propose to use these new discoveries to improve the original model. Firstly, we have used artificial topologies believed to be closer to that of gene regulatory networks. We have also studied actual biological organisms, and used parts of their genetic regulatory networks in our models. Secondly, we have addressed the improbable full synchronicity of the event taking place on. Boolean networks and proposed a more biologically plausible cascading scheme. Finally, we tackled the actual Boolean functions of the model, i.e. the specifics of how genes activate according to the activity of upstream genes, and presented a new update function that takes into account the actual promoting and repressing effects of one gene on another. Our improved models demonstrate the expected, biologically sound, behavior of previous GRN model, yet with superior resistance to perturbations. We believe they are one step closer to the biological reality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pharmacology of synthetic organoselenium compounds indicates that they can be used as antioxidants, enzyme inhibitors, neuroprotectors, anti-tumor and anti-infectious agents, and immunomodulators. In this review, we focus on the effects of diphenyl diselenide (DPDS) in various biological model organisms. DPDS possesses antioxidant activity, confirmed in several in vitro and in vivo systems, and thus has a protective effect against hepatic, renal and gastric injuries, in addition to its neuroprotective activity. The activity of the compound on the central nervous system has been studied since DPDS has lipophilic characteristics, increasing adenylyl cyclase activity and inhibiting glutamate and MK-801 binding to rat synaptic membranes. Systemic administration facilitates the formation of long-term object recognition memory in mice and has a protective effect against brain ischemia and on reserpine-induced orofacial dyskinesia in rats. On the other hand, DPDS may be toxic, mainly because of its interaction with thiol groups. In the yeast Saccharomyces cerevisiae, the molecule acts as a pro-oxidant by depleting free glutathione. Administration to mice during cadmium intoxication has the opposite effect, reducing oxidative stress in various tissues. DPDS is a potent inhibitor of d-aminolevulinate dehydratase and chronic exposure to high doses of this compound has central effects on mouse brain, as well as liver and renal toxicity. Genotoxicity of this compound has been assessed in bacteria, haploid and diploid yeast and in a tumor cell line.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the laboratory of Dr. Dieter Jaeger at Emory University, we use computer simulations to study how the biophysical properties of neurons—including their three-dimensional structure, passive membrane resistance and capacitance, and active membrane conductances generated by ion channels—affect the way that the neurons transfer synaptic inputs into the action potential streams that represent their output. Because our ultimate goal is to understand how neurons process and relay information in a living animal, we try to make our computer simulations as realistic as possible. As such, the computer models reflect the detailed morphology and all of the ion channels known to exist in the particular neuron types being simulated, and the model neurons are tested with synaptic input patterns that are intended to approximate the inputs that real neurons receive in vivo. The purpose of this workshop tutorial was to explain what we mean by ‘in vivo-like’ synaptic input patterns, and how we introduce these input patterns into our computer simulations using the freely available GENESIS software package (http://www.genesis-sim.org/GENESIS). The presentation was divided into four sections: first, an explanation of what we are talking about when we refer to in vivo-like synaptic input patterns

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P-GENESIS is an extension to the GENESIS neural simulator that allows users to take advantage of parallel machines to speed up the simulation of their network models or concurrently simulate multiple models. P-GENESIS adds several commands to the GENESIS script language that let a script running on one processor execute remote procedure calls on other processors, and that let a script synchronize its execution with the scripts running on other processors. We present here some brief comments on the mechanisms underlying parallel script execution. We also offer advice on parallelizing parameter searches, partitioning network models, and selecting suitable parallel hardware on which to run P-GENESIS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents implementation of a low-power tracking CMOS image sensor based on biological models of attention. The presented imager allows tracking of up to N salient targets in the field of view. Employing "smart" image sensor architecture, where all image processing is implemented on the sensor focal plane, the proposed imager allows reduction of the amount of data transmitted from the sensor array to external processing units and thus provides real time operation. The imager operation and architecture are based on the models taken from biological systems, where data sensed by many millions of receptors should be transmitted and processed in real time. The imager architecture is optimized to achieve low-power dissipation both in acquisition and tracking modes of operation. The tracking concept is presented, the system architecture is shown and the circuits description is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Every high resolution imaging system suffers from the bottleneck problem. This problem relates to the huge amount of data transmission from the sensor array to a digital signal processing (DSP) and to bottleneck in performance, caused by the requirement to process a large amount of information in parallel. The same problem exists in biological vision systems, where the information, sensed by many millions of receptors should be transmitted and processed in real time. Models, describing the bottleneck problem solutions in biological systems fall in the field of visual attention. This paper presents the bottleneck problem existing in imagers used for real time salient target tracking and proposes a simple solution by employing models of attention, found in biological systems. The bottleneck problem in imaging systems is presented, the existing models of visual attention are discussed and the architecture of the proposed imager is shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This document corresponds to the tutorial on realistic neural modeling given by David Beeman at WAM-BAMM*05, the first annual meeting of the World Association of Modelers (WAM) Biologically Accurate Modeling Meeting (BAMM) on March 31, 2005 in San Antonio, TX. Part I - Introduction to Realistic Neural Modeling for the Beginner: This is a general overview and introduction to compartmental cell modeling and realistic network simulation for the beginner. Although examples are drawn from GENESIS simulations, the tutorial emphasizes the general modeling approach, rather than the details of using any particular simulator. Part II - Getting Started with Modeling Using GENESIS: This builds upon the background of Part I to describe some details of how this approach is used to construct cell and network simulations in GENESIS. It serves as an introduction and roadmap to the extended hands-on GENESIS Modeling Tutorial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This tutorial is intended to be a "quick start" to creating simulations with GENESIS. It should give you the tools and enough information to let you quickly begin creating cells and networks with GENESIS, making use of the provided example simulations. Advanced topics are covered by appropriate links to the Advanced Tutorials on Realistic Neural Modeling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe four recent additions to NEURON's suite of graphical tools that make it easier for users to create and manage models: an enhancement to the Channel Builder that facilitates the specification and efficient simulation of stochastic channel models

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This tutorial gives a step by step explanation of how one uses experimental data to construct a biologically realistic multicompartmental model. Special emphasis is given on the many ways that this process can be imprecise. The tutorial is intended for both experimentalists who want to get into computer modeling and for computer scientists who use abstract neural network models but are curious about biological realistic modeling. The tutorial is not dependent on the use of a specific simulation engine, but rather covers the kind of data needed for constructing a model, how they are used, and potential pitfalls in the process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Almost all regions of the brain receive one or more neuromodulatory inputs, and disrupting these inputs produces deficits in neuronal function. Neuromodulators act through intracellular second messenger pathways to influence the electrical properties of neurons, integration of synaptic inputs, spatio-temporal firing dynamics of neuronal networks, and, ultimately, systems behavior. Second messengers pathways consist of series of bimolecular reactions, enzymatic reactions, and diffusion. Calcium is the second messenger molecule with the most effectors, and thus is highly regulated by buffers, pumps and intracellular stores. Computational modeling provides an innovative, yet practical method to evaluate the spatial extent, time course and interaction among second messenger pathways, and the interaction of second messengers with neuron electrical properties. These processes occur both in compartments where the number of molecules are large enough to describe reactions deterministically (e.g. cell body), and in compartments where the number of molecules is small enough that reactions occur stochastically (e.g. spines). – In this tutorial, I explain how to develop models of second messenger pathways and calcium dynamics. The first part of the tutorial explains the equations used to model bimolecular reactions, enzyme reactions, calcium release channels, calcium pumps and diffusion. The second part explains some of the GENESIS, Kinetikit and Chemesis objects that implement the appropriate equations. In depth explanation of calcium and second messenger models is provided by reviewing code, both in XPP, Chemesis and Kinetikit, that implements simple models of calcium dynamics and second messenger cascades.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the main roles of the Neural Open Markup Language, NeuroML, is to facilitate cooperation in building, simulating, testing and publishing models of channels, neurons and networks of neurons. MorphML, which was developed as a common format for exchange of neural morphology data, is distributed as part of NeuroML but can be used as a stand-alone application. In this collection of tutorials and workshop summary, we provide an overview of these XML schemas and provide examples of their use in down-stream applications. We also summarize plans for the further development of XML specifications for modeling channels, channel distributions, and network connectivity.