954 resultados para mcf-7 cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microenvironment of the tumor plays an important role in facilitating cancer progression and activating dormant cancer cells. Most tumors are infiltrated with inflammatory cells which secrete cytokines such as tumor necrosis factor-a (TNF-a). To evaluate the role of TNF-a in the development of cancer we studied its effects on cell migration with a migration assay. The migrating cell number in TNF-a -treated group is about 2-fold of that of the control group. Accordingly, the expression of E-cadherin was decreased and the expression of vimentin was increased upon TNF-a treatment. These results showed that TNF-a can promote epithelial-mesenchymal transition (EMT) of MCF-7 cells. Further, we found that the expression of Snail, an important transcription factor in EMT, was increased in this process, which is inhibited by the nuclear factor kappa B (NFkB) inhibitor aspirin while not affected by the reactive oxygen species (ROS) scavenger N-acetyl cysteine. Consistently, specific inhibition of NFkB by the mutant IkBa also blocked the TNF-a-induced upregulation of Snail promoter activity. Thus, the activation of NFkB, which causes an increase in the expression of the transcription factor Snail is essential in the TNF-a-induced EMT. ROS caused by TNF-a seemed to play a minor role in the TNF-a-induced EMT of MCF-7 cells, though ROS per se can promote EMT. These findings suggest that different mechanisms might be responsible for TNF-a - and ROS-induced EMT, indicating the need for different strategies for the prevention of tumor metastasis induced by different stimuli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

3D (three-dimensional) cell culture permits a more integrated analysis of the relationship between cells, inserting them into a structure more closely resembling the cellular microenvironment in vivo. The development of in vitro parameters to approximate in vivo 3D cellular environments makes a less reductionist interpretation of cell biology possible. For breast cells, in vitro 3D culture has proven to be an important tool for the analysis of luminal morphogenesis. A greater understanding of this process is necessary because alterations in the lumen arrangement are associated with carcinogenesis. Following lumen formation in 3D cell culture using laser scanning confocal microscopy, we observed alterations in the arrangement of cytoskeletal components (F-actin and microtubules) and increasing levels of cell death associated with lumen formation. The formation of a polarized monolayer facing the lumen was characterized through 3D reconstructions and the use of TEM (transmission electron microscopy), and this process was found to occur through the gradual clearing of cells from the medullary region of the spheroids. This process was associated with different types of cell death, such as apoptosis, autophagy and entosis. The present study showed that changes in the extracellular matrix associated with long periods of time in 3D cell culture lead to the formation of a lumen in MCF-7 cell spheroids and that features of differentiation such as lumen and budding formation occur after long periods in 3D culture, even in the absence of exogenous extracellular compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alterations in Ca2+ signaling may contribute to tumorigenesis and the mechanism of action of some anticancer drugs. The plasma membrane calcium-ATPase (PMCA) is a crucial controller of intracellular Ca2+ signaling. Altered PMCA expression occurs in the mammary gland during lactation and in breast cancer cell lines. Despite this, the consequences of PMCA inhibition in breast cancer cell lines have not been investigated. In this work, we used Tet-off PMCA antisense-expressing MCF-7 cells to assess the effects of PMCA inhibition in a human breast cancer cell line. At a level of PMCA inhibition that did not completely prevent PMCA-mediated Ca2+ efflux and did not induce cell death, a dramatic inhibition of cellular proliferation was observed. Fluorescence-activated cell sorting analysis indicated that PMCA antisense involves changes in cell cycle kinetics but not cell cycle arrest. We concluded that modulation of PMCA has important effects in regulating the proliferation of human breast cancer MCF-7 cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors are ligand-activated transcription factors with a potential role in cancer. We investigated peroxisome proliferator-activated receptor alpha expression in breast cancer cell lines and showed a relationship between mean peroxisome proliferator-activated receptor alpha and estrogen receptor alpha mRNA levels in estrogen receptor alpha positive breast cancer cells. Transfection of estrogen receptor alpha into the estrogen receptor alpha negative cell line, MDA-MB-231 decreased peroxisome proliferator-activated receptor a mRNA and conversely inhibition of estrogen receptor alpha by ICI-182 780 in estrogen receptor a positive, MCF-7 cells increased peroxisome proliferator-activated receptor a mRNA levels. Estrogen receptor alpha levels can be modulated by histone deacetylase inhibitors and such agents are in clinical trials for cancer treatment. We found the histone deacetylase inhibitor, sodium butyrate, increased peroxisome proliferator-activated receptor alpha mRNA levels within 4 h of treatment. Peroxisome proliferator-activated receptor a modulation was independent of estrogen receptor alpha, as a similar increase was observed in the estrogen receptor a negative MDA-MB-231 cells. To further investigate the relationship between sodium butyrate and peroxisome proliferator-activated receptor alpha expression, we created an MCF-7 cell line that conditionally over-expresses human peroxisome proliferator-activated receptor alpha. Over-expression of the peroxisome proliferator-activated receptor protected MCF-7 cells from sodium butyrate-mediated inhibition of proliferation and attenuated sodium butyrate-mediated induction of histone deacetylase 3 mRNA, indicating that elevated levels of peroxisome proliferator-activated receptor alpha may reduce the sensitivity of cells to histone deacetylase inhibitors. The estrogen receptor alpha dependence of peroxisome proliferator-activated receptor alpha levels may be significant since estrogen receptor alpha negative breast cancer cells are associated with a more aggressive phenotype. Our studies also suggest that peroxisome proliferator-activated receptor alpha levels may be a marker of breast cancer cell sensitivity to histone deacetylase inhibitors. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The immunophilins, cyclophilin 40 (CyP40) and FKBP52, are associated with the unactivated estrogen receptor in mutually exclusive heterocomplexes and may differentially modulate receptor activity, We have recently shown that CyP40 and FKBP52 mRNA's are differentially elevated in breast carcinomas compared with normal breast tissue. Other studies suggest that such alterations ill the ratio of immunophilins might potentially influence steroid receptor function. Studies were therefore initiated to investigate the influence of estradiol on CyP40 and FKBP52 expression in MCF-7 breast cancer cells. Over a 24-h-treatment period with estradiol, CyP40 and FKBP52 mRNA expression was increased approximately five- and 14-fold, respectively. The corresponding protein levels were also elevated in comparison to controls. The antiestrogen, ICI 182,780, was an antagonist for CyP40 and FKBP52 mRNA induction. Cycloheximide treatment did not inhibit this increased immunophilin expression, suggesting that estradiol-mediated activation is independent off de novo protein synthesis. Treatment of MCF-7 cells with estradiol resulted in an increased half-life of both CyP40 and FKBP52 mRNA, as determined by actinomycin D studies. These results suggest that estradiol regulates CyP40 and FKBP52 mRNA expression through both transcriptional and posttranscriptional mechanisms. (C) 2001 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The PKC apoptosis WTI regulator gene, also named prostate apoptosis response-4 (PAR-4), encodes a pro-apoptotic protein that sensitizes cells to numerous apoptotic stimuli. Insulin-like growth factor-1 (IGF-1) and 17 beta-estradiol (E2), two important factors for breast cancer development and progression, have been shown to down-regulate PAR-4 expression and inhibit apoptosis induced by PAR-4 in neuronal cells. In this study, we sought to investigate the mechanisms of regulation of PAR-4 gene expression in MCF-7 cells treated with E2 or IGF-1. E2 (10 nM) and IGF-1 (12.5 nM) each down-regulated PAR-4 expression in MCF-7 cells after 24 h of treatment. The effect of E2 was dependent on ER activation, as demonstrated by an increase in PAR-4 expression when cells were pretreated for 1 h with 1 mu M ICI-182,780 (ICI) before receiving E2 plus ICI. The effect of IGF-1 was abolished by pre-treatment for 1 h with 30 mu M LY294002 (a specific PI3-K inhibitor), and significantly inhibited by 30 mu M SB202190 (a specific p38MAPK inhibitor). We also demonstrated that E2 acts synergistically with IGF-1, resulting in greater down-regulation of PAR-4 mRNA expression compared with E2 or IGF-1 alone. Our results show for the first time that E2 and IGF-1 inhibit PAR-4 gene expression in MCF-7 cells, suggesting that this down-regulation may provide a selective advantage for breast cancer cell survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The endocytosis of E-cadherin has recently emerged as an important determinant of cadherin function with the potential to participate in remodeling adhesive contacts. In this study we focused on the initial fate of E-cadherin when it predominantly exists free on the cell surface prior to adhesive binding or incorporation into junctions. Surface-labeling techniques were used to define the endocytic itinerary of E-cadherin in MCF-7 cells and in Chinese hamster ovary cells stably expressing human E-cadherin. We found that in this experimental system E-cadherin entered a transferrin-negative compartment before transport to the early endosomal compartment, where it merged with classical clathrin-mediated uptake pathways. E-cadherin endocytosis was inhibited by mutant dynamin, but not by an Eps15 mutant that effectively blocked transferrin internalization. Furthermore, sustained signaling by the ARF6 GTPase appeared to trap endocytosed E-cadherin in large peripheral structures. We conclude that in isolated cells unbound E-cadherin on the cell surface is predominantly endocytosed by a clathrin-independent pathway resembling macropinocytotic internalization, which then fuses with the early endosomal system. Taken with earlier reports, this suggests the possibility that multiple pathways exist for E-cadherin entry into cells that are likely to reflect cell context and regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most breast cancer risk factors are associated with prolonged exposure of the mammary gland to high levels of estrogens. The actions of estrogens are predominantly mediated by two receptors, ERα and ERβ, which act as transcription factors binding with high affinity to estrogen response elements in the promoter region of target genes. However, most target genes do not contain the consensus estrogen response elements, but rather degenerated palindromic sequences showing one or more mutations and other ER-binding sites such as AP-1 and SP-1. Using the differential display reverse transcription-polymerase chain reaction technique, our group identified several genes differentially expressed in normal tissue and in ER-positive and ER-negative primary breast tumors. One of the genes shown to be down-regulated in breast tumors compared to normal breast tissue was the PHLDA1 (Pleckstrin homology-like domain, family A, member 1). In the present study, we investigated the potential of PHLDA1 to be regulated by estrogen via ER in MCF-7 breast cancer cells. The promoter region of PHLDA1 shows an imperfect palindrome, an AP-1- and three SP-1-binding sites potentially regulated by estrogens. We also assessed the effects of 17β-estradiol on PHLDA1 mRNA expression in MCF-7 breast cancer cells. MCF-7 cells exposed to 10 nM 17β-estradiol showed more than 2-fold increased expression of the PHLDA1 transcripts compared to control cells (P = 0.05). The anti-estrogen ICI 182,780 (1 µM) inhibited PHLDA1 mRNA expression and completely abolished the effect of 10 nM 17β-estradiol on PHLDA1 expression (P < 0.05), suggesting that PHLDA1 is regulated by estrogen via ER.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The combined treatment with histone deacetylase inhibitors (HDACi) and retinoids has been suggested as a potential epigenetic strategy for the control of cancer. In the present study, we investigated the effects of treatment with butyrate, a dietary HDACi, combined with vitamin A on MCF-7 human breast cancer cells. Cell proliferation was evaluated by the crystal violet staining method. MCF-7 cells were plated at 5 x 10(4) cells/mL and treated with butyrate (1 mM) alone or combined with vitamin A (10 µM) for 24 to 120 h. Cell proliferation inhibition was 34, 10 and 46% following treatment with butyrate, vitamin A and their combination, respectively, suggesting that vitamin A potentiated the inhibitory activities of butyrate. Furthermore, exposure to this short-chain fatty acid increased the level of histone H3K9 acetylation by 9.5-fold (Western blot), but not of H4K16, and increased the expression levels of p21WAF1 by 2.7-fold (Western blot) and of RARβ by 2.0-fold (quantitative real-time PCR). Our data show that RARβ may represent a molecular target for butyrate in breast cancer cells. Due to its effectiveness as a dietary HDACi, butyrate should be considered for use in combinatorial strategies with more active retinoids, especially in breast cancers in which RARβ is epigenetically altered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The alkyl esters of p-hydroxybenzoic acid (parabens), which are used as preservatives in consumer products, possess oestrogenic activity and have been measured in human breast tissue. This has raised concerns for a potential involvement in the development of human breast cancer. In this paper, we have investigated the extent to which proliferation of MCF-7 human breast cancer cells can be increased by exposure to the five parabens either alone or in combination at concentrations as recently measured in 160 human breast tissue samples. Determination of no-observed-effect concentrations (NOEC), lowest-observed-effect concentrations (LOEC), EC50 and EC100 values for stimulation of proliferation of MCF-7 cells by five parabens revealed that 43/160 (27%) of the human breast tissue samples contained at least one paraben at a concentration ≥ LOEC and 64/160 (40%) > NOEC. Proliferation of MCF-7 cells could be increased by combining all five parabens at concentrations down to the 50th percentile (median) values measured in the tissues. For the 22 tissue samples taken at the site of ER + PR + primary cancers, 12 contained a sufficient concentration of one or more paraben to stimulate proliferation of MCF-7 cells. This demonstrates that parabens, either alone or in combination, are present in human breast tissue at concentrations sufficient to stimulate the proliferation of MCF-7 cells in vitro, and that functional consequences of the presence of paraben in human breast tissue should be assessed on the basis of all five parabens and not single parabens individually.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aluminium (Al) has been measured in human breast tissue, nipple aspirate fluid and breast cyst fluid, and recent studies have shown that at tissue concentrations, aluminium can induce DNA damage and suspension growth in human breast epithelial cells. This paper demonstrates for the first time that exposure to aluminium can also increase migratory and invasive properties of MCF-7 human breast cancer cells. Long-term (32 weeks) but not short-term (1 week) exposure of MCF-7 cells to 10-4M aluminium chloride or 10-4M aluminium chlorohydrate increased motility of the cells as measured by live cell imaging (cumulative length moved by individual cells), by a wound healing assay and by migration in real time through 8m pores of a membrane using xCELLigence technology. Long-term exposure (37weeks) to 10-4M aluminium chloride or 10-4M aluminium chlorohydrate also increased the ability of MCF-7 cells to invade through a matrigel layer as measured in real time using the xCELLigence system. Although molecular mechanisms remain to be characterized, the ability of aluminium salts to increase migratory and invasive properties of MCF-7 cells suggests that the presence of aluminium in the human breast could influence metastatic processes. This is important because mortality from breast cancer arises mainly from tumour spread rather than from the presence of a primary tumour in the breast.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Efficacy of endocrine therapy is compromised when human breast cancer cells circumvent imposed growth inhibition. The model of long-term oestrogen-deprived MCF-7 human breast cancer cells has suggested the mechanism results from hypersensitivity to low levels of residual oestrogen. Materials and methods: MCF-7 cells were maintained for up to 30 weeks in phenol-red-free medium and charcoal-stripped serum with 10-8 M 17-oestradiol and 10 g/ml insulin (stock 1), 10-8 M 17-oestradiol (stock 2), 10 g/ml insulin (stock 3) or no addition (stock 4). Results: Loss of growth response to oestrogen was observed only in stock 4 cells. Long-term maintenance with insulin in the absence of oestradiol (stock 3) resulted in raised oestrogen receptor alpha (ERlevels (measured by western immunoblotting) and development of hypersensitivity (assayed by oestrogen-responsive reporter gene induction and dose response to oestradiol for proliferation under serum-free conditions), but with no loss of growth response to oestrogen. Conclusion: Hypersensitivity can develop without any growth adaptation and therefore is not a prerequisite for loss of growth response in MCF-7 cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The combined treatment with histone deacetylase inhibitors (HDACi) and retinoids has been suggested as a potential epigenetic strategy for the control of cancer. In the present study, we investigated the effects of treatment with butyrate, a dietary HDACi, combined with vitamin A on MCF-7 human breast cancer cells. Cell proliferation was evaluated by the crystal violet staining method. MCF-7 cells were plated at 5 x 10(4) cells/mL and treated with butyrate (1 mM) alone or combined with vitamin A (10 µM) for 24 to 120 h. Cell proliferation inhibition was 34, 10 and 46% following treatment with butyrate, vitamin A and their combination, respectively, suggesting that vitamin A potentiated the inhibitory activities of butyrate. Furthermore, exposure to this short-chain fatty acid increased the level of histone H3K9 acetylation by 9.5-fold (Western blot), but not of H4K16, and increased the expression levels of p21WAF1 by 2.7-fold (Western blot) and of RARβ by 2.0-fold (quantitative real-time PCR). Our data show that RARβ may represent a molecular target for butyrate in breast cancer cells. Due to its effectiveness as a dietary HDACi, butyrate should be considered for use in combinatorial strategies with more active retinoids, especially in breast cancers in which RARβ is epigenetically altered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AMR-Me, a C-28 methylester derivative of triterpenoid compound Amooranin isolated from Amoora rohituka stem bark and the plant has been reported to possess multitude of medicinal properties. Our previous studies have shown that AMR-Me can induce apoptosis through mitochondrial apoptotic and MAPK signaling pathways by regulating the expression of apoptosis related genes in human breast cancer MCF-7 cells. However, the molecular mechanism of AMR-Me induced apoptotic cell death remains unclear. Our results showed that AMR-Me dose-dependently inhibited the proliferation of MCF-7 and MDA-MB-231 cells under serum-free conditions supplemented with 1 nM estrogen (E2) with an IC50 value of 0.15 µM, 0.45 µM, respectively. AMR-Me had minimal effects on human normal breast epithelial MCF-10A + ras and MCF-10A cells with IC50 value of 6 and 6.5 µM, respectively. AMR-Me downregulated PI3K p85, Akt1, and p-Akt in an ERα-independent manner in MCF-7 cells and no change in expression levels of PI3K p85 and Akt were observed in MDA-MB-231 cells treated under similar conditions. The PI3K inhibitor LY294002 suppressed Akt activation similar to AMR-Me and potentiated AMR-Me induced apoptosis in MCF-7 cells. EMSA revealed that AMR-Me inhibited nuclear factor-kappaB (NF-κB) DNA binding activity in MDA-MB-231 cells in a time-dependent manner and abrogated EGF induced NF-κB activation. From these studies we conclude that AMR-Me decreased ERα expression and effectively inhibited Akt phosphorylation in MCF-7 cells and inactivate constitutive nuclear NF-κB and its regulated proteins in MDA-MB-231 cells. Due to this multifactorial effect in hormone-dependent and independent breast cancer cells AMR-Me deserves attention for use in breast cancer prevention and therapy