998 resultados para marine foragers
Resumo:
Acknowledgments This work was funded by an Arts and Humanities Research Council (AH/K006029/1) grant awarded to Rick Knecht, Kate Britton and Charlotta Hillerdal (Aberdeen); an AHRC-LabEx award (AH/N504543/1) to KB, RK, Keith Dobney (Liverpool) and Isabelle Sidéra (Nanterre); the Carnegie Trust to the Universities of Scotland (travel grant to KB); and the Max Planck Institute for Evolutionary Anthropology. The onsite collection of samples was carried out by staff and students from the University of Aberdeen, volunteer excavators and the residents of Quinhagak. We had logistical and planning support for fieldwork by the Qanirtuuq Incorporated, Quinhagak, Alaska, and the people of Quinhagak, who we also thank for sampling permissions. Special thanks to Warren Jones and Qanirtuuq Incorporated (especially Michael Smith and Lynn Church), and to all Nunalleq project team members, in Aberdeen and at other institutions, particularly Charlotta Hillerdal and Edouard Masson-Maclean (Aberdeen) for comments on earlier versions of this manuscript, and also to Véronique Forbes, Ana Jorge, Carly Ameen and Ciara Mannion (Aberdeen) for their inputs. Thanks also to Michelle Alexander (York). Finally, thank you to Ian Scharlotta (Alberta) for inviting us to contribute to this special issue, to the Editor, and to three anonymous reviewers, whose suggestions and recommended changes to an earlier version of this manuscript greatly improved the paper.
Resumo:
An optimal search theory, the so-called Levy-flight foraging hypothesis(1), predicts that predators should adopt search strategies known as Levy flights where prey is sparse and distributed unpredictably, but that Brownian movement is sufficiently efficient for locating abundant prey(2-4). Empirical studies have generated controversy because the accuracy of statistical methods that have been used to identify Levy behaviour has recently been questioned(5,6). Consequently, whether foragers exhibit Levy flights in the wild remains unclear. Crucially, moreover, it has not been tested whether observed movement patterns across natural landscapes having different expected resource distributions conform to the theory's central predictions. Here we use maximum-likelihood methods to test for Levy patterns in relation to environmental gradients in the largest animal movement data set assembled for this purpose. Strong support was found for Levy search patterns across 14 species of open-ocean predatory fish (sharks, tuna, billfish and ocean sunfish), with some individuals switching between Levy and Brownian movement as they traversed different habitat types. We tested the spatial occurrence of these two principal patterns and found Levy behaviour to be associated with less productive waters (sparser prey) and Brownian movements to be associated with productive shelf or convergence-front habitats (abundant prey). These results are consistent with the Levy-flight foraging hypothesis(1,7), supporting the contention(8,9) that organism search strategies naturally evolved in such a way that they exploit optimal Levy patterns.
Resumo:
An optimal search theory, the so-called Levy-flight foraging hypothesis(1), predicts that predators should adopt search strategies known as Levy flights where prey is sparse and distributed unpredictably, but that Brownian movement is sufficiently efficient for locating abundant prey(2-4). Empirical studies have generated controversy because the accuracy of statistical methods that have been used to identify Levy behaviour has recently been questioned(5,6). Consequently, whether foragers exhibit Levy flights in the wild remains unclear. Crucially, moreover, it has not been tested whether observed movement patterns across natural landscapes having different expected resource distributions conform to the theory's central predictions. Here we use maximum-likelihood methods to test for Levy patterns in relation to environmental gradients in the largest animal movement data set assembled for this purpose. Strong support was found for Levy search patterns across 14 species of open-ocean predatory fish (sharks, tuna, billfish and ocean sunfish), with some individuals switching between Levy and Brownian movement as they traversed different habitat types. We tested the spatial occurrence of these two principal patterns and found Levy behaviour to be associated with less productive waters (sparser prey) and Brownian movements to be associated with productive shelf or convergence-front habitats (abundant prey). These results are consistent with the Levy-flight foraging hypothesis(1,7), supporting the contention(8,9) that organism search strategies naturally evolved in such a way that they exploit optimal Levy patterns.
Resumo:
Brucite [Mg(OH)2] microbialites occur in vacated interseptal spaces of living scleractinian coral colonies (Acropora, Pocillopora, Porites) from subtidal and intertidal settings in the Great Barrier Reef, Australia, and subtidal Montastraea from the Florida Keys, United States. Brucite encrusts microbial filaments of endobionts (i.e., fungi, green algae, cyanobacteria) growing under organic biofilms; the brucite distribution is patchy both within interseptal spaces and within coralla. Although brucite is undersaturated in seawater, its precipitation was apparently induced in the corals by lowered pCO2 and increased pH within microenvironments protected by microbial biofilms. The occurrence of brucite in shallow-marine settings highlights the importance of microenvironments in the formation and early diagenesis of marine carbonates. Significantly, the brucite precipitates discovered in microenvironments in these corals show that early diagenetic products do not necessarily reflect ambient seawater chemistry. Errors in environmental interpretation may arise where unidentified precipitates occur in microenvironments in skeletal carbonates that are subsequently utilized as geochemical seawater proxies.
Resumo:
In this paper we propose an efficient authentication and integrity scheme to support DGPS corrections using the RTCM protocol, such that the identified vulnerabilities in DGPS are mitigated. The proposed scheme is based on the TESLA broadcast protocol with modifications that make it suitable for the bandwidth and processor constrained environment of marine DGPS.
Resumo:
The following technical report describes the approach and algorithm used to detect marine mammals from aerial imagery taken from manned/unmanned platform. The aim is to automate the process of counting the population of dugongs and other mammals. We have developed and algorithm that automatically presents to a user a number of possible candidates of these mammals. We tested the algorithm in two distinct datasets taken from different altitudes. Analysis and discussion is presented in regards with the complexity of the input datasets, the detection performance.