726 resultados para malware classification
Resumo:
Malware detection is a growing problem particularly on the Android mobile platform due to its increasing popularity and accessibility to numerous third party app markets. This has also been made worse by the increasingly sophisticated detection avoidance techniques employed by emerging malware families. This calls for more effective techniques for detection and classification of Android malware. Hence, in this paper we present an n-opcode analysis based approach that utilizes machine learning to classify and categorize Android malware. This approach enables automated feature discovery that eliminates the need for applying expert or domain knowledge to define the needed features. Our experiments on 2520 samples that were performed using up to 10-gram opcode features showed that an f-measure of 98% is achievable using this approach.
Resumo:
Malware has become a major threat in the last years due to the ease of spread through the Internet. Malware detection has become difficult with the use of compression, polymorphic methods and techniques to detect and disable security software. Those and other obfuscation techniques pose a problem for detection and classification schemes that analyze malware behavior. In this paper we propose a distributed architecture to improve malware collection using different honeypot technologies to increase the variety of malware collected. We also present a daemon tool developed to grab malware distributed through spam and a pre-classification technique that uses antivirus technology to separate malware in generic classes. © 2009 SPIE.
Resumo:
Hoy en día, con la evolución continua y rápida de las tecnologías de la información y los dispositivos de computación, se recogen y almacenan continuamente grandes volúmenes de datos en distintos dominios y a través de diversas aplicaciones del mundo real. La extracción de conocimiento útil de una cantidad tan enorme de datos no se puede realizar habitualmente de forma manual, y requiere el uso de técnicas adecuadas de aprendizaje automático y de minería de datos. La clasificación es una de las técnicas más importantes que ha sido aplicada con éxito a varias áreas. En general, la clasificación se compone de dos pasos principales: en primer lugar, aprender un modelo de clasificación o clasificador a partir de un conjunto de datos de entrenamiento, y en segundo lugar, clasificar las nuevas instancias de datos utilizando el clasificador aprendido. La clasificación es supervisada cuando todas las etiquetas están presentes en los datos de entrenamiento (es decir, datos completamente etiquetados), semi-supervisada cuando sólo algunas etiquetas son conocidas (es decir, datos parcialmente etiquetados), y no supervisada cuando todas las etiquetas están ausentes en los datos de entrenamiento (es decir, datos no etiquetados). Además, aparte de esta taxonomía, el problema de clasificación se puede categorizar en unidimensional o multidimensional en función del número de variables clase, una o más, respectivamente; o también puede ser categorizado en estacionario o cambiante con el tiempo en función de las características de los datos y de la tasa de cambio subyacente. A lo largo de esta tesis, tratamos el problema de clasificación desde tres perspectivas diferentes, a saber, clasificación supervisada multidimensional estacionaria, clasificación semisupervisada unidimensional cambiante con el tiempo, y clasificación supervisada multidimensional cambiante con el tiempo. Para llevar a cabo esta tarea, hemos usado básicamente los clasificadores Bayesianos como modelos. La primera contribución, dirigiéndose al problema de clasificación supervisada multidimensional estacionaria, se compone de dos nuevos métodos de aprendizaje de clasificadores Bayesianos multidimensionales a partir de datos estacionarios. Los métodos se proponen desde dos puntos de vista diferentes. El primer método, denominado CB-MBC, se basa en una estrategia de envoltura de selección de variables que es voraz y hacia delante, mientras que el segundo, denominado MB-MBC, es una estrategia de filtrado de variables con una aproximación basada en restricciones y en el manto de Markov. Ambos métodos han sido aplicados a dos problemas reales importantes, a saber, la predicción de los inhibidores de la transcriptasa inversa y de la proteasa para el problema de infección por el virus de la inmunodeficiencia humana tipo 1 (HIV-1), y la predicción del European Quality of Life-5 Dimensions (EQ-5D) a partir de los cuestionarios de la enfermedad de Parkinson con 39 ítems (PDQ-39). El estudio experimental incluye comparaciones de CB-MBC y MB-MBC con los métodos del estado del arte de la clasificación multidimensional, así como con métodos comúnmente utilizados para resolver el problema de predicción de la enfermedad de Parkinson, a saber, la regresión logística multinomial, mínimos cuadrados ordinarios, y mínimas desviaciones absolutas censuradas. En ambas aplicaciones, los resultados han sido prometedores con respecto a la precisión de la clasificación, así como en relación al análisis de las estructuras gráficas que identifican interacciones conocidas y novedosas entre las variables. La segunda contribución, referida al problema de clasificación semi-supervisada unidimensional cambiante con el tiempo, consiste en un método nuevo (CPL-DS) para clasificar flujos de datos parcialmente etiquetados. Los flujos de datos difieren de los conjuntos de datos estacionarios en su proceso de generación muy rápido y en su aspecto de cambio de concepto. Es decir, los conceptos aprendidos y/o la distribución subyacente están probablemente cambiando y evolucionando en el tiempo, lo que hace que el modelo de clasificación actual sea obsoleto y deba ser actualizado. CPL-DS utiliza la divergencia de Kullback-Leibler y el método de bootstrapping para cuantificar y detectar tres tipos posibles de cambio: en las predictoras, en la a posteriori de la clase o en ambas. Después, si se detecta cualquier cambio, un nuevo modelo de clasificación se aprende usando el algoritmo EM; si no, el modelo de clasificación actual se mantiene sin modificaciones. CPL-DS es general, ya que puede ser aplicado a varios modelos de clasificación. Usando dos modelos diferentes, el clasificador naive Bayes y la regresión logística, CPL-DS se ha probado con flujos de datos sintéticos y también se ha aplicado al problema real de la detección de código malware, en el cual los nuevos ficheros recibidos deben ser continuamente clasificados en malware o goodware. Los resultados experimentales muestran que nuestro método es efectivo para la detección de diferentes tipos de cambio a partir de los flujos de datos parcialmente etiquetados y también tiene una buena precisión de la clasificación. Finalmente, la tercera contribución, sobre el problema de clasificación supervisada multidimensional cambiante con el tiempo, consiste en dos métodos adaptativos, a saber, Locally Adpative-MB-MBC (LA-MB-MBC) y Globally Adpative-MB-MBC (GA-MB-MBC). Ambos métodos monitorizan el cambio de concepto a lo largo del tiempo utilizando la log-verosimilitud media como métrica y el test de Page-Hinkley. Luego, si se detecta un cambio de concepto, LA-MB-MBC adapta el actual clasificador Bayesiano multidimensional localmente alrededor de cada nodo cambiado, mientras que GA-MB-MBC aprende un nuevo clasificador Bayesiano multidimensional. El estudio experimental realizado usando flujos de datos sintéticos multidimensionales indica los méritos de los métodos adaptativos propuestos. ABSTRACT Nowadays, with the ongoing and rapid evolution of information technology and computing devices, large volumes of data are continuously collected and stored in different domains and through various real-world applications. Extracting useful knowledge from such a huge amount of data usually cannot be performed manually, and requires the use of adequate machine learning and data mining techniques. Classification is one of the most important techniques that has been successfully applied to several areas. Roughly speaking, classification consists of two main steps: first, learn a classification model or classifier from an available training data, and secondly, classify the new incoming unseen data instances using the learned classifier. Classification is supervised when the whole class values are present in the training data (i.e., fully labeled data), semi-supervised when only some class values are known (i.e., partially labeled data), and unsupervised when the whole class values are missing in the training data (i.e., unlabeled data). In addition, besides this taxonomy, the classification problem can be categorized into uni-dimensional or multi-dimensional depending on the number of class variables, one or more, respectively; or can be also categorized into stationary or streaming depending on the characteristics of the data and the rate of change underlying it. Through this thesis, we deal with the classification problem under three different settings, namely, supervised multi-dimensional stationary classification, semi-supervised unidimensional streaming classification, and supervised multi-dimensional streaming classification. To accomplish this task, we basically used Bayesian network classifiers as models. The first contribution, addressing the supervised multi-dimensional stationary classification problem, consists of two new methods for learning multi-dimensional Bayesian network classifiers from stationary data. They are proposed from two different points of view. The first method, named CB-MBC, is based on a wrapper greedy forward selection approach, while the second one, named MB-MBC, is a filter constraint-based approach based on Markov blankets. Both methods are applied to two important real-world problems, namely, the prediction of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and protease inhibitors, and the prediction of the European Quality of Life-5 Dimensions (EQ-5D) from 39-item Parkinson’s Disease Questionnaire (PDQ-39). The experimental study includes comparisons of CB-MBC and MB-MBC against state-of-the-art multi-dimensional classification methods, as well as against commonly used methods for solving the Parkinson’s disease prediction problem, namely, multinomial logistic regression, ordinary least squares, and censored least absolute deviations. For both considered case studies, results are promising in terms of classification accuracy as well as regarding the analysis of the learned MBC graphical structures identifying known and novel interactions among variables. The second contribution, addressing the semi-supervised uni-dimensional streaming classification problem, consists of a novel method (CPL-DS) for classifying partially labeled data streams. Data streams differ from the stationary data sets by their highly rapid generation process and their concept-drifting aspect. That is, the learned concepts and/or the underlying distribution are likely changing and evolving over time, which makes the current classification model out-of-date requiring to be updated. CPL-DS uses the Kullback-Leibler divergence and bootstrapping method to quantify and detect three possible kinds of drift: feature, conditional or dual. Then, if any occurs, a new classification model is learned using the expectation-maximization algorithm; otherwise, the current classification model is kept unchanged. CPL-DS is general as it can be applied to several classification models. Using two different models, namely, naive Bayes classifier and logistic regression, CPL-DS is tested with synthetic data streams and applied to the real-world problem of malware detection, where the new received files should be continuously classified into malware or goodware. Experimental results show that our approach is effective for detecting different kinds of drift from partially labeled data streams, as well as having a good classification performance. Finally, the third contribution, addressing the supervised multi-dimensional streaming classification problem, consists of two adaptive methods, namely, Locally Adaptive-MB-MBC (LA-MB-MBC) and Globally Adaptive-MB-MBC (GA-MB-MBC). Both methods monitor the concept drift over time using the average log-likelihood score and the Page-Hinkley test. Then, if a drift is detected, LA-MB-MBC adapts the current multi-dimensional Bayesian network classifier locally around each changed node, whereas GA-MB-MBC learns a new multi-dimensional Bayesian network classifier from scratch. Experimental study carried out using synthetic multi-dimensional data streams shows the merits of both proposed adaptive methods.
Resumo:
El Malware es una grave amenaza para la seguridad de los sistemas. Con el uso generalizado de la World Wide Web, ha habido un enorme aumento en los ataques de virus, haciendo que la seguridad informática sea esencial para todas las computadoras y se expandan las áreas de investigación sobre los nuevos incidentes que se generan, siendo una de éstas la clasificación del malware. Los “desarrolladores de malware” utilizan nuevas técnicas para generar malware polimórfico reutilizando los malware existentes, por lo cual es necesario agruparlos en familias para estudiar sus características y poder detectar nuevas variantes de los mismos. Este trabajo, además de presentar un detallado estado de la cuestión de la clasificación del malware de ficheros ejecutables PE, presenta un enfoque en el que se mejora el índice de la clasificación de la base de datos de Malware MALICIA utilizando las características estáticas de ficheros ejecutables Imphash y Pehash, utilizando dichas características se realiza un clustering con el algoritmo clustering agresivo el cual se cambia con la clasificación actual mediante el algoritmo de majority voting y la característica icon_label, obteniendo un Precision de 99,15% y un Recall de 99,32% mejorando la clasificación de MALICIA con un F-measure de 99,23%.---ABSTRACT---Malware is a serious threat to the security of systems. With the widespread use of the World Wide Web, there has been a huge increase in virus attacks, making the computer security essential for all computers. Near areas of research have append in this area including classifying malware into families, Malware developers use polymorphism to generate new variants of existing malware. Thus it is crucial to group variants of the same family, to study their characteristics and to detect new variants. This work, in addition to presenting a detailed analysis of the problem of classifying malware PE executable files, presents an approach in which the classification in the Malware database MALICIA is improved by using static characteristics of executable files, namely Imphash and Pehash. Both features are evaluated through clustering real malware with family labels with aggressive clustering algorithm and combining this with the current classification by Majority voting algorithm, obtaining a Precision of 99.15% and a Recall of 99.32%, improving the classification of MALICIA with an F-measure of 99,23%.
Resumo:
Ochnaceae s.str. (Malpighiales) are a pantropical family of about 500 species and 27 genera of almost exclusively woody plants. Infrafamilial classification and relationships have been controversial partially due to the lack of a robust phylogenetic framework. Including all genera except Indosinia and Perissocarpa and DNA sequence data for five DNA regions (ITS, matK, ndhF, rbcL, trnL-F), we provide for the first time a nearly complete molecular phylogenetic analysis of Ochnaceae s.l. resolving most of the phylogenetic backbone of the family. Based on this, we present a new classification of Ochnaceae s.l., with Medusagynoideae and Quiinoideae included as subfamilies and the former subfamilies Ochnoideae and Sauvagesioideae recognized at the rank of tribe. Our data support a monophyletic Ochneae, but Sauvagesieae in the traditional circumscription is paraphyletic because Testulea emerges as sister to the rest of Ochnoideae, and the next clade shows Luxemburgia+Philacra as sister group to the remaining Ochnoideae. To avoid paraphyly, we classify Luxemburgieae and Testuleeae as new tribes. The African genus Lophira, which has switched between subfamilies (here tribes) in past classifications, emerges as sister to all other Ochneae. Thus, endosperm-free seeds and ovules with partly to completely united integuments (resulting in an apparently single integument) are characters that unite all members of that tribe. The relationships within its largest clade, Ochnineae (former Ochneae), are poorly resolved, but former Ochninae (Brackenridgea, Ochna) are polyphyletic. Within Sauvagesieae, the genus Sauvagesia in its broad circumscription is polyphyletic as Sauvagesia serrata is sister to a clade of Adenarake, Sauvagesia spp., and three other genera. Within Quiinoideae, in contrast to former phylogenetic hypotheses, Lacunaria and Touroulia form a clade that is sister to Quiina. Bayesian ancestral state reconstructions showed that zygomorphic flowers with adaptations to buzz-pollination (poricidal anthers), a syncarpous gynoecium (a near-apocarpous gynoecium evolved independently in Quiinoideae and Ochninae), numerous ovules, septicidal capsules, and winged seeds with endosperm are the ancestral condition in Ochnoideae. Although in some lineages poricidal anthers were lost secondarily, the evolution of poricidal superstructures secured the maintenance of buzz-pollination in some of these genera, indicating a strong selective pressure on keeping that specialized pollination system.
Resumo:
Diabetic Retinopathy (DR) is a complication of diabetes that can lead to blindness if not readily discovered. Automated screening algorithms have the potential to improve identification of patients who need further medical attention. However, the identification of lesions must be accurate to be useful for clinical application. The bag-of-visual-words (BoVW) algorithm employs a maximum-margin classifier in a flexible framework that is able to detect the most common DR-related lesions such as microaneurysms, cotton-wool spots and hard exudates. BoVW allows to bypass the need for pre- and post-processing of the retinographic images, as well as the need of specific ad hoc techniques for identification of each type of lesion. An extensive evaluation of the BoVW model, using three large retinograph datasets (DR1, DR2 and Messidor) with different resolution and collected by different healthcare personnel, was performed. The results demonstrate that the BoVW classification approach can identify different lesions within an image without having to utilize different algorithms for each lesion reducing processing time and providing a more flexible diagnostic system. Our BoVW scheme is based on sparse low-level feature detection with a Speeded-Up Robust Features (SURF) local descriptor, and mid-level features based on semi-soft coding with max pooling. The best BoVW representation for retinal image classification was an area under the receiver operating characteristic curve (AUC-ROC) of 97.8% (exudates) and 93.5% (red lesions), applying a cross-dataset validation protocol. To assess the accuracy for detecting cases that require referral within one year, the sparse extraction technique associated with semi-soft coding and max pooling obtained an AUC of 94.2 ± 2.0%, outperforming current methods. Those results indicate that, for retinal image classification tasks in clinical practice, BoVW is equal and, in some instances, surpasses results obtained using dense detection (widely believed to be the best choice in many vision problems) for the low-level descriptors.
Resumo:
261
Resumo:
The Subaxial Injury Classification (SLIC) system and severity score has been developed to help surgeons in the decision-making process of treatment of subaxial cervical spine injuries. A detailed description of all potential scored injures of the SLIC is lacking. We performed a systematic review in the PubMed database from 2007 to 2014 to describe the relationship between the scored injuries in the SLIC and their eventual treatment according to the system score. Patients with an SLIC of 1-3 points (conservative treatment) are neurologically intact with the spinous process, laminar or small facet fractures. Patients with compression and burst fractures who are neurologically intact are also treated nonsurgically. Patients with an SLIC of 4 points may have an incomplete spinal cord injury such as a central cord syndrome, compression injuries with incomplete neurologic deficits and burst fractures with complete neurologic deficits. SLIC of 5-10 points includes distraction and rotational injuries, traumatic disc herniation in the setting of a neurological deficit and burst fractures with an incomplete neurologic deficit. The SLIC injury severity score can help surgeons guide fracture treatment. Knowledge of the potential scored injures and their relationships with the SLIC are of paramount importance for spine surgeons who treated subaxial cervical spine injuries.
Resumo:
to assess the construct validity and reliability of the Pediatric Patient Classification Instrument. correlation study developed at a teaching hospital. The classification involved 227 patients, using the pediatric patient classification instrument. The construct validity was assessed through the factor analysis approach and reliability through internal consistency. the Exploratory Factor Analysis identified three constructs with 67.5% of variance explanation and, in the reliability assessment, the following Cronbach's alpha coefficients were found: 0.92 for the instrument as a whole; 0.88 for the Patient domain; 0.81 for the Family domain; 0.44 for the Therapeutic procedures domain. the instrument evidenced its construct validity and reliability, and these analyses indicate the feasibility of the instrument. The validation of the Pediatric Patient Classification Instrument still represents a challenge, due to its relevance for a closer look at pediatric nursing care and management. Further research should be considered to explore its dimensionality and content validity.
Resumo:
Frankfurters are widely consumed all over the world, and the production requires a wide range of meat and non-meat ingredients. Due to these characteristics, frankfurters are products that can be easily adulterated with lower value meats, and the presence of undeclared species. Adulterations are often still difficult to detect, due the fact that the adulterant components are usually very similar to the authentic product. In this work, FT-Raman spectroscopy was employed as a rapid technique for assessing the quality of frankfurters. Based on information provided by the Raman spectra, a multivariate classification model was developed to identify the frankfurter type. The aim was to study three types of frankfurters (chicken, turkey and mixed meat) according to their Raman spectra, based on the fatty vibrational bands. Classification model was built using partial least square discriminant analysis (PLS-DA) and the performance model was evaluated in terms of sensitivity, specificity, accuracy, efficiency and Matthews's correlation coefficient. The PLS-DA models give sensitivity and specificity values on the test set in the ranges of 88%-100%, showing good performance of the classification models. The work shows the Raman spectroscopy with chemometric tools can be used as an analytical tool in quality control of frankfurters.
Resumo:
To compare the distributions of patients with clinical-pathological subtypes of luminal B-like breast cancer according to the 2011 and 2013 St. Gallen International Breast Cancer Conference Expert Panel. We studied 142 women with breast cancer who were positive to estrogen receptor and had been treated in São Paulo state, southeast Brazil. The expression of the following receptors was assessed by immunohistochemistry: estrogen, progesterone (PR) and Ki-67. The expression of HER-2 was measured by fluorescent in situ hybridization analysis in tissue microarray. There were 29 cases of luminal A breast cancers according to the 2011 St. Gallen International Breast Cancer Conference Expert Panel that were classified as luminal B-like in the 2013 version. Among the 65 luminal B-like breast cancer cases, 29 (45%) were previous luminal A tumors, 15 cases (20%) had a Ki-67 >14% and were at least 20% PR positive and 21 cases (35%) had Ki-67 >14% and more than 20% were PR positive. The 2013 St. Gallen consensus updated the definition of intrinsic molecular subtypes and increased the number of patients classified as having luminal B-like breast cancer in our series, for whom the use of cytotoxic drugs will probably be proposed with additional treatment cost.
Resumo:
Improve the content validity of the instrument for classification of pediatric patients and evaluate its construct validity. A descriptive exploratory study in the measurement of the content validity index, and correlational design for construct validation through exploratory factor analysis. The content validity index for indicators was 0.99 and it was 0.97 for graded situations. Three domains were extracted in the construct validation, namely: patient, family and therapeutic procedures, with 74.97% of explained variance. The instrument showed evidences of content and construct validity. The validation of the instrument occurred under the approach of family-centered care, and allowed incorporating some essential needs of childhood such as playing, interaction and affection in the content of the instrument.
Resumo:
To evaluate the distribution of women according to the Robson 10-group classification system (RTGCS) and the occurrence of severe maternal morbidity (SMM) by mode of delivery at a tertiary referral hospital. A retrospective cross-sectional study was conducted of all women admitted to the Women's Hospital at the University of Campinas (Campinas, Brazil) for delivery between January 2009 and July 2013. Women were grouped according to RTGCS. Mode of delivery and SMM (defined as need for admission to the intensive care unit) were assessed. Among 12 771 women, 5957 (46.6%) delivered by cesarean. Overall, 3594 (28.1%) women were in group 1 (nulliparous, single pregnancy, cephalic, term, spontaneous labor), 2328 (18.2%) in group 5 (≥1 previous cesarean, single pregnancy, cephalic, term), and 2112 (16.5%) in group 3 (multiparous excluding previous cesarean, single pregnancy, cephalic, term, spontaneous labor). Group 5 contributed the most cesarean deliveries (1626 [27.3%]), followed by group 2 (nulliparous, single pregnancy, cephalic, term, induced labor or cesarean before labor; 1049 [17.6%]). SMM was more common among women undergoing cesarean delivery than among those delivering vaginally in groups 1-5. The RTGCS allowed the identification of groups with the highest frequency of cesarean delivery and an assessment of SMM. This should be considered in related health policies.
Resumo:
Didanosine-loaded chitosan microspheres were developed applying a surface-response methodology and using a modified Maximum Likelihood Classification. The operational conditions were optimized with the aim of maintaining the active form of didanosine (ddI), which is sensitive to acid pH, and to develop a modified and mucoadhesive formulation. The loading of the drug within the chitosan microspheres was carried out by ionotropic gelation technique with sodium tripolyphosphate (TPP) as cross-linking agent and magnesium hydroxide (Mg(OH)2) to assure the stability of ddI. The optimization conditions were set using a surface-response methodology and applying the Maximum Likelihood Classification, where the initial chitosan concentration, TPP and ddI concentration were set as the independent variables. The maximum ddI-loaded in microspheres (i.e. 1433mg of ddI/g chitosan), was obtained with 2% (w/v) chitosan and 10% TPP. The microspheres depicted an average diameter of 11.42μm and ddI was gradually released during 2h in simulated enteric fluid.