996 resultados para luminescence spectra
Resumo:
Spectral properties of Nd3+ and Dy3+ ions in different phosphate glasses were studied and several spectroscopic parameters were reported. Covalency of rare-earth-oxygen bond was studied in these phosphate glass matrices with the variation of modifier in host glass matrix Using Judd-Ofelt intensity parameters (Omega(2), Omega(4) and Omega(6)), radiative transition probabilities (A) and radiative lifetimes (tau(R)) of certain excited states of Nd3+ and Dy3+ ions are estimated in these glass matrices. From the magnitudes of branching ratios (beta(R)) and integrated absorption cross-sections (Sigma), certain transitions of both the ions are identified for laser excitation. From the emission spectra, peak stimulated emission cross-sections (sigma(P)) are evaluated for the emission transitions observed in all these phosphate glass matrices for both Nd3+ and Dy3+ ions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Results of photoluminescence measurements for natural and synthetic alexandrite (BeAl2O4:Cr3+) are presented, where the samples are excited by the 488 nm line of an Ar+ laser, at different temperatures. The main issue is the analysis of the Cr3+ transition in the chrysoberyl matrix (BeAl2O4), with major technological application as active media for laser action. Results indicate anomalous behavior of Cr3+ transition depending on the measurement temperature. A simple model to explain the phenomena is suggested.
Resumo:
In this work, we present a theoretical photoluminescence (PL) for p-doped GaAs/InGaAsN nanostructures arrays. We apply a self-consistent method in the framework of the effective mass theory. Solving a full 8 x 8 Kane's Hamiltonian, generalized to treat different materials in conjunction with the Poisson equation, we calculate the optical properties of these systems. The trends in the calculated PL spectra, due to many-body effects within the quasi-two-dimensional hole gas, are analyzed as a function of the acceptor doping concentration and the well width. Effects of temperature in the PL spectra are also investigated. This is the first attempt to show theoretical luminescence spectra for GaAs/InGaAsN nanostructures and can be used as a guide for the design of nanostructured devices such as optoelectronic devices, solar cells, and others.
Resumo:
This work contains 4 topics dealing with the properties of the luminescence from Ge.
The temperature, pump-power and time dependences of the photoluminescence spectra of Li-, As-, Ga-, and Sb-doped Ge crystals were studied. For impurity concentrations less than about 1015cm-3, emissions due to electron-hole droplets can clearly be identified. For impurity concentrations on the order of 1016cm-3, the broad lines in the spectra, which have previously been attributed to the emission from the electron-hole-droplet, were found to possess pump-power and time dependent line shape. These properties show that these broad lines cannot be due to emission of electron-hole-droplets alone. We interpret these lines to be due to a combination of emissions from (1) electron-hole- droplets, (2) broadened multiexciton complexes, (3) broadened bound-exciton, and (4) plasma of electrons and holes. The properties of the electron-hole-droplet in As-doped Ge were shown to agree with theoretical predictions.
The time dependences of the luminescence intensities of the electron-hole-droplet in pure and doped Ge were investigated at 2 and 4.2°K. The decay of the electron-hole-droplet in pure Ge at 4.2°K was found to be pump-power dependent and too slow to be explained by the widely accepted model due to Pokrovskii and Hensel et al. Detailed study of the decay of the electron-hole-droplets in doped Ge were carried out for the first time, and we find no evidence of evaporation of excitons by electron-hole-droplets at 4.2°K. This doped Ge result is unexplained by the model of Pokrovskii and Hensel et al. It is shown that a model based on a cloud of electron-hole-droplets generated in the crystal and incorporating (1) exciton flow among electron-hole-droplets in the cloud and (2) exciton diffusion away from the cloud is capable of explaining the observed results.
It is shown that impurities, introduced during device fabrication, can lead to the previously reported differences of the spectra of laser-excited high-purity Ge and electrically excited Ge double injection devices. By properly choosing the device geometry so as to minimize this Li contamination, it is shown that the Li concentration in double injection devices may be reduced to less than about 1015cm-3 and electrically excited luminescence spectra similar to the photoluminescence spectra of pure Ge may be produced. This proves conclusively that electron-hole-droplets may be created in double injection devices by electrical excitation.
The ratio of the LA- to TO-phonon-assisted luminescence intensities of the electron-hole-droplet is demonstrated to be equal to the high temperature limit of the same ratio of the exciton for Ge. This result gives one confidence to determine similar ratios for the electron-hole-droplet from the corresponding exciton ratio in semiconductors in which the ratio for the electron-hole-droplet cannot be determined (e.g., Si and GaP). Knowing the value of this ratio for the electron-hole-droplet, one can obtain accurate values of many parameters of the electron-hole-droplet in these semiconductors spectroscopically.
Resumo:
The Raman spectra, infrared spectra and upconversion luminescence spectra were studied, and the effect mechanism of OH- groups on the upconversion luminescence of Er3+-doped oxyhalide tellurite glasses was analyzed. The results show that the phonon energy of lead chloride tellurite (PCT) glass was lower than that of lead fluoride tellurite (PFT) glass, but upconversion luminescence intensity of Er3+-doped PFT glass was higher than that of Er3+-doped PCT glass. The analysis considers that it was attributed mainly to the effect of OH- groups. The lower the absorption coefficient of the OH- groups, the higher the fluorescence lifetime of Er3+, and as a result the higher upconversion luminescence intensity of Er3+. In this work, the effect of OH groups on the upconversion luminescence of Er3+ was bigger than that of the phonon energy. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Absorption and luminescence spectra and optical amplification in bismuth-doped germanate silicate glass were investigated. Two kinds of bismuth ion valence states could exist in the glass. One is Bi2+, which has shown red luminescence, another might be Bi+, which is the active center for infrared luminescence. The infrared luminescence excited at 700, 800, and 980 nm should be ascribed to the electronic transition P-3(1) --> P-3(0) of Bi+ ions in three distinct sites. The shifting, broadening, and multiple configuration of the luminescence could be due to the randomly disorder of local environment and multiple sites of the active centers. In this glass, obvious optical amplification was realized at 1300 nm wavelength when excited at 808 and 980 nm, respectively.
Resumo:
NaYF4: 0.02Er center dot xYb-PVP composite nanofibers with the diameter of similar to 400 nm have been prepared by electrospinning. Field emission scanning electron microscope and X-ray diffraction have been utilized to characterize morphology and structure of the as-prepared electrospun nanofibers. Their up-conversion luminescence is investigated under a 980-nm excitation. Green (538 and 520 nm), red (6-55 nm), and blue (405 nm) emissions are observed in the up-conversion luminescence spectra, and the intensity of these three emissions changes differently with the variety of Yb content, which has been interpreted successfully in this letter. The color of NaYF4: 0.02Er center dot xYb-PVP nanolibers under a 980-nm excitation can be changed from green --> white --> yellow gradually via changing the Yb content.
Resumo:
Infrared (1.2-1.6 mum) luminescence in a yttrium aluminium garnet (YAG) crystal, co-doped with Yb (10 at.%) and Cr (0.05 at.%) ions, was investigated under CW laser diode pumping (lambda = 940 nm). The Cr4+ emission band was observed with its peak at 1.35 mum and measured to be about 6% with respect to Yb3+ IR luminescence (lambda = 1.03 mum). Analysis of the crystal absorption and luminescence spectra allows one to conclude that Yb3+-Cr4+ energy transfer is a mechanism responsible for the B-3(2)(T-3(2))-B-3(1)((3)A(2)) emission of Cr4+ ions. This crystal is promising as an efficient source of the near infrared emission. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we present results on upconversion luminescence performed on Yb3+-doped yttrium aluminum garnets under 940 nm excitation. The upconversion luminescence was ascribed to Yb3+ cooperative luminescence and the presence of rare earth impurity ions. The cooperative luminescence spectra as a function of Yb concentration were measured and the emission intensity variation with Yb concentration was discussed. Yb3+ energy migration quenched the cooperative luminescence of Yb:YAG crystals with doping level over 15 at%. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Visible upconversion luminescence was observed in Cr3+: Al2O3 crystal under focused femtosecond laser irradiation. The luminescence spectra show that the upconversion luminescence originates from the E-2-(4)A(2) transition of Cr3+. The dependence of the fluorescence intensity of Cr3+ on the pump power reveals that a two-photon absorption process dominates in the conversion of infrared radiation to the visible emission. It is suggested that the simultaneous absorption of two infrared photons produces the population of upper excited states, which leads to the characteristic visible emission from E-2 state of Cr3+.
Resumo:
Nitrogen-doped beta-Ga2O3 nanowires (GaO NWs) were prepared by annealing the as-grown nanowires in an ammonia atmosphere. The optical properties of the nitrogen-doped GaO NWs were studied by measurements of the photoluminescence and phosphorescence decay at the temperature range between 10 and 300 K. The experimental results revealed that nitrogen doping in GaO NWs induced a novel intensive red-light emission around 1.67 eV, with a characteristic decay time around 136 mus at 77 K, much shorter than that of the blue emission (a decay time of 457 mus). The time decay and temperature-dependent luminescence spectra were calculated theoretically based on a donor-acceptor pair model, which is in excellent agreement with the experimental data. This result suggests that the observed novel red-light emission originates from the recombination of an electron trapped on a donor due to oxygen vacancies and a hole trapped on an acceptor due to nitrogen doping.
Resumo:
Zn2SiO4:Mn2+, Zn2SiO4:Eu3+ and Zn2SiO4:Mn2+ Eu3+ phosphors were prepared by a sol-gel process and their luminescence spectra were investigated. The emission bands from intra-ion transitions of Mn2+ and Eu3+ samples were studied as a function of pressure. The pressure coefficient of Mn2+ emission was found to be -25.3 +/- 0.5 and -28.5 +/- 0.9 meV/GPa for Zn2SiO4:Mn2+ and Zn2SiO4:Mn2+ Eu3+, respectively. The Eu3+ emission shows only weak pressure dependence. The pressure dependences of the Mn2+ and Eu3+ emissions in Zn2SiO4:Mn2+ Eu3+ are slightly different from that in Zn2SiO4:Mn2+ and Zn2SiO4:Eu3+ samples, which can be attributed to the co-doping of Mn2+ and Eu3+ ions. The Mn2+ emission in the two samples, however, exhibits analogous temperature dependence and similar luminescence lifetimes, indicating no energy transfer from Mn2+ to Eu3+ occurs. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
GdF3:Er3+,Yb-3 with Er3+ ion of 3% and Yb3+ ion concentration of 10%, 20% have been prepared by a hydrothermal method. The results of XRD show that all the samples are of an orthorhombic structure. The average crystallite sizes estimated by Scherrer formula are 28 and 26 nm for Gd0.87Yb0.10Er0.03F3 and Gd0.77Yb0.20Er0.03F3, respectively. The Upconversion luminescence spectra of the samples have been studied under 980 run laser excitation. The results show that the green and red upconversion emission can be attributed to the H-2(11/2),S-4(3/2) -> 4I(15/2) and 4F(9/2) -> 4I(15/2) transitions of Er3+, respectively.
Resumo:
Y2O3: Er3+, Yb3+ nanoparticles were synthesized by a homogeneous precipitation method without and with different concentrations of EDTA 2Na. Upconversion luminescence spectra of the samples were studied under 980 nm laser excitation. The results of XRD showed that the obtained Y2O3:Er3+,Yb3+ nanoparticles were of a cubic structure. The average crystallite sizes calculated were in the range of 28-40 nm. Green and red upconversion emission were observed, and attributed to H-2(11/2), S-4(3/2) -> I-4(15/2) and F-4(9/2) -> I-4(15/2) transitions of the Er3+ ion, respectively.
Resumo:
Gd2O3:Er3+, Yb3+ nanoparticles have been synthesized by a homogeneous precipitation method with EDTA 2Na of two different concentrations. Upconversion luminescence spectra of the samples have been studied under 980 nm laser excitation. The results of XRD show that obtained Gd2O3:Er3+, Yb3+ nanoparticles are of a cubic structure. The average crystallite sizes could be calculated as 22 and 29 nm, respectively. The strong green and red upconversion emission were observed, and attributed to the H-2(11/2), S-4(3/2) -> I-4(15/2) and F-4(19/2) -> I-4(15/2) transitions of Er3+ ion, respectively.