907 resultados para low-contrast
Resumo:
Objective: To investigate how age-related declines in vision (particularly contrast sensitivity), simulated using cataract-goggles and low-contrast stimuli, influence the accuracy and speed of cognitive test performance in older adults. An additional aim was to investigate whether declines in vision differentially affect secondary more than primary memory. Method: Using a fully within-subjects design, 50 older drivers aged 66-87 years completed two tests of cognitive performance - letter matching (perceptual speed) and symbol recall (short-term memory) - under different viewing conditions that degraded visual input (low-contrast stimuli, cataract-goggles, and low-contrast stimuli combined with cataract-goggles, compared with normal viewing). However, presentation time was also manipulated for letter matching. Visual function, as measured using standard charts, was taken into account in statistical analyses. Results: Accuracy and speed for cognitive tasks were significantly impaired when visual input was degraded. Furthermore, cognitive performance was positively associated with contrast sensitivity. Presentation time did not influence cognitive performance, and visual gradation did not differentially influence primary and secondary memory. Conclusion: Age-related declines in visual function can impact on the accuracy and speed of cognitive performance, and therefore the cognitive abilities of older adults may be underestimated in neuropsychological testing. It is thus critical that visual function be assessed prior to testing, and that stimuli be adapted to older adults' sensory capabilities (e.g., by maximising stimuli contrast).
Resumo:
Purpose Anecdotal evidence suggests that some sunglass users prefer yellow tints for outdoor activities, such as driving, and research has suggested that such tints improve the apparent contrast and brightness of real-world objects. The aim of this study was to establish whether yellow filters resulted in objective improvements in performance for visual tasks relevant to driving. Methods Response times of nine young (age [mean ± SD], 31.4 ± 6.7 years) and nine older (age, [mean ± SD], 74.6 ± 4.8) adults were measured using video presentations of traffic hazards (driving hazard perception task) and a simple low-contrast grating appeared at random peripheral locations on a computer screen. Response times were compared when participants wore a yellow filter (with and without a linear polarizer) versus a neutral density filter (with and without a linear polarizer). All lens combinations were matched to have similar luminance transmittances (˜27%). Results In the driving hazard perception task, the young but not the older participants responded significantly more rapidly to hazards when wearing a yellow filter than with a luminance-matched neutral density filter (mean difference, 450 milliseconds). In the low-contrast grating task, younger participants also responded more quickly for the yellow filter condition but only when combined with a polarizer. Although response times increased with increasing stimulus eccentricity for the low-contrast grating task, for the younger participants, this slowing of response times with increased eccentricity was reduced in the presence of a yellow filter, indicating that perception of more peripheral objects may be improved by this filter combination. Conclusions Yellow filters improve response times for younger adults for visual tasks relevant to driving.
Resumo:
Modal analysis of a deep-etched low-contrast two-port beam splitter grating under Littrow Mounting is presented. The guideline for the design of a subwavelength transmission fused-silica phase grating as high-efficiency grating, polarizing beam splitter (PBS), and two-port beam splitter, is summarized. As an example, a polarization-independent two-port beam splitter grating is designed at wavelength of 1064 nm. We firstly analyzed the physical essence of the grating by the simplified modal method. The guideline for the grating design and the approximate grating parameters are obtained. Then using the rigorous coupled-wave analysis (RCWA) with parameters varying around the approximate ones, Optimum grating parameters can be determined. With the design guideline, the time for the rigorous calculation of the grating profile parameters can be reduced significantly. (C) 2008 Elsevier B.V. All rights reserved
Resumo:
Beam splitting of low-contrast rectangular gratings under second Bragg angle incidence is studied. The grating period is between lambda and 2 lambda. The diffraction behaviors of the three transmitted propagating orders are illustrated by analyzing the first three propagating grating modes. From a simplified modal approach, the design conditions of gratings as a high-efficiency element with most of its energy concentrated in the -2nd transmitted order (similar to 90%) and of gratings as a 1 x 2 beam splitter with a total efficiency over 90% are derived. The grating parameters for achieving exactly the splitting pattern by use of rigorous coupled-wave analysis verified the design method. A 1 x 3 beam splitter is also demonstrated. Moreover, the polarization-dependent diffraction behaviors are investigated, which suggest the possibility of designing polarization-selective elements under such a configuration. The proposed concept of using the second Bragg angle should be helpful for developing new grating-based devices. (C) 2008 Optical Society of America.
Resumo:
On the basis of the technique of time reversal (TR), through adding dispersive delay lines to each element of a TR mirror, a method for low contrast tumour detection is proposed. When compared with a conventional detection method, the proposed method improves refocusing onto a low dielectric contrast tumour. The method does not require an accurate estimate of the position of the tumour. The theoretical basis for the approach is given and numerical simulated results demonstrate the capability of the proposed method.
Resumo:
Detection of a visual signal can be facilitated by simultaneous presentation of a similar subthreshold signal. Here we show that the facilitatory effect of a subthreshold signal can persist for more than 16 s. Presenting a near-threshold Gabor signal (prime) produced a phase-independent increase in contrast sensitivity (40%) to similar successive signals (target) for a period of up to 16 s. This effect was obtained only when both prime and target were presented to the same eye. We further show that the memory trace is inactivated by presenting high-contrast signals before the target. These results suggest that activated neurons in the primary visual cortex retain a near-threshold memory trace that persists until reactivated.
Resumo:
The aim of this study was to determine the cues used to signal avoidance of difficult driving situations and to test the hypothesis that drivers with relatively poor high contrast visual acuity (HCVA) have fewer crashes than drivers with relatively poor normalised low contrast visual acuity (NLCVA). This is because those with poorer HCVA are well aware of their difficulties and avoid dangerous driving situations while those poorer NLCVA are often unaware of the extent of their problem. Age, self-reported situation avoidance and HCVA were collected during a practice based study of 690 drivers. Screening was also carried out on 7254 drivers at various venues, mainly motorway sites, throughout the UK. Age, self-reported situation avoidance and prior crash involvement were recorded and Titmus vision screeners were used to measure HCVA and NLCVA. Situation avoidance increased in reduced visibility conditions and was influenced by age and HCVA. Only half of the drivers used visual cues to signal situation avoidance and most of these drivers used high rather than low contrast cues. A statistical model designed to remove confounding interrelationships between variables showed, for drivers that did not report situation avoidance, that crash involvement decreased for drivers with below average HCVA and increased for those with below average NLCVA. These relationships accounted for less than 1% of the crash variance, so the hypothesis was not strongly supported. © 2002 The College of Optometrists.
Resumo:
Misperception of speed under low-contrast conditions has been identified as a possible contributor to motor vehicle crashes in fog. To test this hypothesis, we investigated the effects of reduced contrast on drivers’ perception and control of speed while driving under real-world conditions. Fourteen participants drove around a 2.85 km closed road course under three visual conditions: clear view and with two levels of reduced contrast created by diffusing filters on the windscreen and side windows. Three dependent measures were obtained, without view of the speedometer, on separate laps around the road course: verbal estimates of speed; adjustment of speed to instructed levels (25 to 70 km h-1); and estimation of minimum stopping distance. The results showed that drivers traveled more slowly under low-contrast conditions. Reduced contrast had little or no effect on either verbal judgments of speed or estimates of minimum stopping distance. Speed adjustments were significantly slower under low-contrast than clear conditions, indicating that, contrary to studies of object motion, drivers perceived themselves to be traveling faster under conditions of reduced contrast. Under real-world driving conditions, drivers’ ability to perceive and control their speed was not adversely affected by large variations in the contrast of their surroundings. These findings suggest that perceptions of self-motion and object motion involve neural processes that are differentially affected by variations in stimulus contrast as encountered in fog.
Resumo:
Purpose: Older adults have increased visual impairment, including refractive blur from presbyopic multifocal spectacle corrections, and are less able to extract visual information from the environment to plan and execute appropriate stepping actions; these factors may collectively contribute to their higher risk of falls. The aim of this study was to examine the effect of refractive blur and target visibility on the stepping accuracy and visuomotor stepping strategies of older adults during a precision stepping task. Methods: Ten healthy, visually normal older adults (mean age 69.4 ± 5.2 years) walked up and down a 20 m indoor corridor stepping onto selected high and low-contrast targets while viewing under three visual conditions: best-corrected vision, +2.00 DS and +3.00 DS blur; the order of blur conditions was randomised between participants. Stepping accuracy and gaze behaviours were recorded using an eyetracker and a secondary hand-held camera. Results: Older adults made significantly more stepping errors with increasing levels of blur, particularly exhibiting under-stepping (stepping more posteriorly) onto the targets (p<0.05), while visuomotor stepping strategies did not significantly alter. Stepping errors were also significantly greater for the low compared to the high contrast targets and differences in visuomotor stepping strategies were found, including increased duration of gaze and increased interval between gaze onset and initiation of the leg swing when stepping onto the low contrast targets. Conclusions: These findings highlight that stepping accuracy is reduced for low visibility targets, and for high levels of refractive blur at levels typically present in multifocal spectacle corrections, despite significant changes in some of the visuomotor stepping strategies. These findings highlight the importance of maximising the contrast of objects in the environment, and may help explain why older adults wearing multifocal spectacle corrections exhibit an increased risk of falling.
Resumo:
The purpose of this study was to compare contrast sensitivity estimated from transient visual evoked potentials (VEPs) elicited by achromatic pattern-reversal and pattern-onset/offset modes. The stimuli were 2-cpd, achromatic horizontal gratings presented either as a 1 Hz pattern reversal or a 300 ms onset/700 ms offset stimulus. Contrast thresholds were estimated by linear regression to amplitudes of VEP components vs. the logarithm of the stimulus contrasts, and these regressions were extrapolated to the zero amplitude level. Contrast sensitivity was defined as the inverse of contrast threshold. For pattern reversal, the relation between the P100 amplitude and log of the stimulus contrast was best described by two separate linear regressions. For the N135 component, a single straight line was sufficient. In the case of pattern onset/offset for both the C1 and C2 components, single straight lines described their amplitude vs. log contrast relations in the medium-to-low contrast range. Some saturation was observed for C2 components. The contrast sensitivity estimated from the low-contrast limb of the P100, from the N135, and from the C2 were all similar but higher than those obtained from the high-contrast limb of the P100 and C1 data, which were also similar to each other. With 2 cpd stimuli, a mechanism possibly driven by the M pathway appeared to contribute to the P100 component at medium-to-low contrasts and to the N135 and C2 components at all contrast levels, whereas another mechanism, possibly driven by the P and M pathways, appeared to contribute to the P100 component at high contrast and C1 component at all contrast levels.
Resumo:
Contrast susceptibility is defined as the difference in visual acuity recorded for high and low contrast optotypes. Other researchers refer to this parameter as "normalised low contrast acuity". Pilot surveys have revealed that contrast susceptibility deficits are more strongly related to driving accident involvement than are deficits in high contrast visual acuity. It has been hypothesised that driving situation avoidance is purely based upon high contrast visual acuity. Hence, the relationship between high contrast visual acuity and accidents is masked by situation avoidance whilst drivers with contrast susceptibility deficits remain prone to accidents in poor visibility conditions. A national survey carried out to test this hypothesis provided no support for either the link between contrast susceptibility deficits and accidents involvement or the proposed hypothesis. Further, systematically worse contrast susceptibility scores emerged from vision screeners compared to wall mounted test charts. This discrepancy was not due to variations in test luminance or instrument myopia. Instead, optical imperfections inherent in vision screeners were considered to be responsible. Although contrast susceptibility is unlikely to provide a useful means of screening drivers' vision, previous research does provide support for its ability to detect visual deficits that may influence everyday tasks. In this respect, individual contrast susceptibility variations were found to reflect variations in the contrast sensitivity function - a parameter that provides a global estimate of human contrast sensitivity.
Resumo:
The aim of this work was to investigate human contrast perception at various contrast levels ranging from detection threshold to suprathreshold levels by using psychophysical techniques. The work consists of two major parts. The first part deals with contrast matching, and the second part deals with contrast discrimination. Contrast matching technique was used to determine when the perceived contrasts of different stimuli were equal. The effects of spatial frequency, stimulus area, image complexity and chromatic contrast on contrast detection thresholds and matches were studied. These factors influenced detection thresholds and perceived contrast at low contrast levels. However, at suprathreshold contrast levels perceived contrast became directly proportional to the physical contrast of the stimulus and almost independent of factors affecting detection thresholds. Contrast discrimination was studied by measuring contrast increment thresholds which indicate the smallest detectable contrast difference. The effects of stimulus area, external spatial image noise and retinal illuminance were studied. The above factors affected contrast detection thresholds and increment thresholds measured at low contrast levels. At high contrast levels, contrast increment thresholds became very similar so that the effect of these factors decreased. Human contrast perception was modelled by regarding the visual system as a simple image processing system. A visual signal is first low-pass filtered by the ocular optics. This is followed by spatial high-pass filtering by the neural visual pathways, and addition of internal neural noise. Detection is mediated by a local matched filter which is a weighted replica of the stimulus whose sampling efficiency decreases with increasing stimulus area and complexity. According to the model, the signals to be compared in a contrast matching task are first transferred through the early image processing stages mentioned above. Then they are filtered by a restoring transfer function which compensates for the low-level filtering and limited spatial integration at high contrast levels. Perceived contrasts of the stimuli are equal when the restored responses to the stimuli are equal. According to the model, the signals to be discriminated in a contrast discrimination task first go through the early image processing stages, after which signal dependent noise is added to the matched filter responses. The decision made by the human brain is based on the comparison between the responses of the matched filters to the stimuli, and the accuracy of the decision is limited by pre- and post-filter noises. The model for human contrast perception could accurately describe the results of contrast matching and discrimination in various conditions.