1000 resultados para like-phospholipase


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Proteolytic enzymes have evolved several mechanisms to cleave peptide bonds. These distinct types have been systematically categorized in the MEROPS database. While a BLAST search on these proteases identifies homologous proteins, sequence alignment methods often fail to identify relationships arising from convergent evolution, exon shuffling, and modular reuse of catalytic units. We have previously established a computational method to detect functions in proteins based on the spatial and electrostatic properties of the catalytic residues (CLASP). CLASP identified a promiscuous serine protease scaffold in alkaline phosphatases (AP) and a scaffold recognizing a beta-lactam (imipenem) in a cold-active Vibrio AP. Subsequently, we defined a methodology to quantify promiscuous activities in a wide range of proteins. Here, we assemble a module which encapsulates the multifarious motifs used by protease families listed in the MEROPS database. Since APs and proteases are an integral component of outer membrane vesicles (OMV), we sought to query other OMV proteins, like phospholipase C (PLC), using this search module. Our analysis indicated that phosphoinositide-specific PLC from Bacillus cereus is a serine protease. This was validated by protease assays, mass spectrometry and by inhibition of the native phospholipase activity of PI-PLC by the well-known serine protease inhibitor AEBSF (IC50 = 0.018 mM). Edman degradation analysis linked the specificity of the protease activity to a proline in the amino terminal, suggesting that the PI-PLC is a prolyl peptidase. Thus, we propose a computational method of extending protein families based on the spatial and electrostatic congruence of active site residues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lys49-Phospholipase A(2) (Lys49-PLA(2) - EC 3.1.1.4) homologues damage membranes by a Ca2+-independent mechanism which does not involve catalytic activity. Both MjTX-II from Bothrops moojeni and BthTX-I from Bothrops jararacussu are dimeric in solution and in the crystalline states, and a model for the Ca2+-independent membrane damaging mechanism has been suggested in which flexibility at the dimer interface region pert-nits quaternary structural transitions between open and closed membrane bound dimer conformations which results in the perturbation of membrane phospholipids and disruption of the bilayer structure [1]. With the aim of gaining insights into the structural determinants involved in protein/lipid association, we report here the crystallization and preliminary X-ray analysis of the (i) MjTX-II/SDS complex at a resolution of 2.78Angstrom, (ii) MjTX-II/STE complex at a resolution of 1.8 Angstrom and (W) BthTX-I/DMPC complex at 2.72Angstrom. These complexes were crystallized by the hanging drop vapour-diffusion technique in (i) HEPES buffer (pH 7.5) 1.8M ammonium sulfate with 2% (w/v) polyethyleneglycol 400, in (ii) 0.6-0.8 M sodium citrate as the precipitant (pH 6.0-6.5) and in (iii) sodium citrate buffer (pH 5.8) and PEG 4000 and 20% isopropanol, respectively. Single crystals of these complexes have been obtained and X-ray diffraction data have been collected at room temperature using a R-AXIS IV imaging plate system and graphite monochromated Cu Kalpha X-ray radiation generated by a Rigaku RU300 rotating anode generator for (i) and (W) and using using a Synchrotron Radiation Source (Laboratorio Nacional de Luz Sincrotron, LNLS, Campinas, Brazil) for (ii).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Steatosis is a prominent feature of hepatitis C, especially in patients infected with genotype 3. The analysis of genetic polymorphisms influencing steatosis in chronic hepatitis C has been limited by the studies' small sample size, and important single nucleotide polymorphisms (SNPs), such as those in the patatin-like phospholipase family 3 protein (PNPLA3), were never evaluated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alcoholic liver disease (ALD) accounts for the majority of chronic liver disease in Western countries. The spectrum of ALD includes steatosis with or without fibrosis in virtually all individuals with an alcohol consumption of >80 g/day, alcoholic steatohepatitis of variable severity in 10-35% and liver cirrhosis in approximately 15% of patients. Once cirrhosis is established, there is an annual risk for hepatocellular carcinoma of 1-2%. Environmental factors such as drinking patterns, coexisting liver disease, obesity, diet composition and comedication may modify the natural course of ALD. Twin studies have revealed a substantial contribution of genetic factors to the evolution of ALD, as demonstrated by a threefold higher disease concordance between monozygotic twins and dizygotic twins. With genotyping becoming widely available, a large number of genetic case-control studies evaluating candidate gene variants coding for proteins involved in the degradation of alcohol, mediating antioxidant defence, the evolution and counteraction of necroinflammation and formation and degradation of extracellular matrix have been published with largely unconfirmed, impeached or even disproved associations. Recently, whole genome analyses of large numbers of genetic variants in several chronic liver diseases including gallstone disease, primary sclerosing cholangitis and non-alcoholic fatty liver disease (NAFLD) have identified novel yet unconsidered candidate genes. Regarding the latter, a sequence variation within the gene coding for patatin-like phospholipase encoding 3 (PNPLA3, rs738409) was found to modulate steatosis, necroinflammation and fibrosis in NAFLD. Subsequently, the same variant was repeatedly confirmed as the first robust genetic risk factor for progressive ALD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND A recessive inherited form of lamellar ichthyosis is well recognized in golden retrievers. In this breed, young puppies demonstrate a self-limiting scaling disorder which is commonly recognized by breeders, who use the term "milk crust" to describe this syndrome. HYPOTHESIS/OBJECTIVES To determine whether "milk crust" is a new keratinization disorder or a self-limiting form of golden retriever ichthyosis. ANIMALS A total of 179 golden retriever dogs (21 dams and 158 puppies) were examined. METHODS Dermatological examination and assessment of the patatin-like phospholipase-1 (PNPLA1) genotype by PCR testing of buccal mucosal swabs. Skin biopsies from one affected puppy were evaluated for histopathological abnormalities. RESULTS Forty-five of 158 (28%) puppies exhibited scaling at 8 weeks of age; 113 of 158 (72%) were dermatologically normal. Of 144 analysed samples, 40 of 144 (28%) puppies demonstrated a homozygous mutation of the PNPLA1 genotype [of which, 36 of 40 (90%) had signs of scaling], 77 of 144 (53%) demonstrated a heterozygous mutation and 27 of 144 (19%) were a normal wild-type. In six of 17 (35%) dams, a homozygous mutation of the PNPLA1 genotype was found, eight of 17 (47%) demonstrated a heterozygous mutation and three of 17 (18%) were normal wild-type. Dams with a homozygous mutation were clinically unaffected. A 1 year follow-up revealed that 23 of 28 (82%) puppies affected with this syndrome failed to develop typical signs of ichthyosis. In five of 28 (18%) dogs there was persistence of mild scaling. CONCLUSIONS AND CLINICAL IMPORTANCE We hypothesize that the clinical syndrome termed "milk crust" could represent a transient form of golden retriever ichthyosis. Remission is not fully linked to PNPLA1 genotype, suggesting that unknown factors may contribute to the clinical disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Activation of platelets by collagen is mediated through a tyrosine kinase-dependent pathway that is associated with phosphorylation of the Fc receptor gamma chain, the tyrosine kinase syk, and phospholipase C gamma2 (PLC gamma2). We recently described a collagen-related triple-helical peptide (CRP) with the sequence GCP*(GPP*)GCP*G (single letter amino acid code: P* = hydroxyproline; Morton et al, Biochem J306:337, 1995). The cross-linked peptide is a potent stimulus of platelet activation but, unlike collagen, does not support alpha2beta1-mediated, Mg2+-dependent adhesion, suggesting that its action is independent of the integrin alpha2beta1. This finding suggests the existence of a platelet receptor other than alpha2beta1 that underlies activation. In the present study, we show that CRP stimulates tyrosine phosphorylation of the same pattern of proteins in platelets as collagen, including syk and PLC gamma2. Protein tyrosine phosphorylation induced by CRP is not altered in the absence of Mg2+ or the presence of monoclonal antibodies (MoAbs) to the integrin alpha2beta1 (MoAb 6F1 and MoAb 13), conditions that prevent the interaction of collagen with the integrin. In contrast, phosphorylation of syk and PLC gamma2 by collagen is partially reduced by MoAb 6F1 and MoAb 13 or by removal of Mg2+. This may reflect a direct role of alpha2beta1 in collagen-induced signaling events or an indirect role in which the integrin facilitates the binding of collagen to its signaling receptor. The results show an alpha2beta1-independent pathway of platelet activation by CRP that involves phosphorylation of syk and PLC gamma2. This pathway appears to contribute to platelet activation by collagen.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Myotoxin II, a myotoxic calcium-independent phospholipase-like protein isolated from the venom of Bothrops asper, possesses no detectable phospholipase activity. The crystal structure has been determined and refined at 2.8 Angstrom to an R factor of 16.5% (F>3 sigma) with excellent stereochemistry. Amino-acid differences between catalytically active phospholipases and myotoxin LI in the Ca2+-binding region, specifically the substitutions Tyr28-->Asn, Gly32-->Leu and Asp49-->Lys, result in an altered local conformation. The key difference is that the epsilon-amino group of Lys49 fills the site normally occupied by the calcium ion in catalytically active phospholipases. In contrast to the homologous monomeric Lys49 variant from Agkistrodon piscivorus piscivorus, myotoxin II is present as a dimer both in solution and in the crystalline state. The two molecules in the asymmetric unit are related by a nearly perfect twofold axis, yet the dimer is radically different from the dimer formed by the phospholipase from Crotalus atrox. Whereas in C. atrox the dimer interface occludes the active sites, in myotoxin II they are exposed to solvent.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Envenomation via snakebites is an important public health problem in many tropical and subtropical countries that, in addition to mortality, can result in permanent sequelae as a consequence of local tissue damage, which represents a major challenge to antivenom therapy. Venom phospholipases A(2) (PLA(2)s) and PLA(2)-like proteins play a leading role in the complex pathogenesis of skeletal muscle necrosis, nevertheless their precise mechanism of action is only partially understood. Recently, detailed structural information has been obtained for more than twenty different members of the PLA(2)-like myotoxin subfamily. In this review, we integrate the available structural, biochemical and functional data on these toxins and present a comprehensive hypothesis for their myotoxic mechanism. This process involves an allosteric transition and the participation of two independent interaction sites for docking and disruption of the target membrane, respectively, leading to a five-step mechanism of action. Furthermore, recent functional and structural studies of these toxins complexed with ligands reveal diverse neutralization mechanisms that can be classified into at least three different groups. Therefore, the data summarized here for the PLA(2)-like myotoxins could provide a useful molecular basis for the search for novel neutralizing strategies to improve the treatment of envenomation by viperid snakes. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The function of the small-Mr Ras-like GTPase Rap1 remains largely unknown, but this protein has been demonstrated to regulate cortical actin-based morphologic changes in Dictyostelium and the oxidative burst in mammalian neutrophils. To test whether Rap1 regulates phagocytosis, we biochemically analyzed cell lines that conditionally and modestly overexpressed wild-type [Rap1 WT(+)], constitutively active [Rap1 G12T(+)], and dominant negative [Rap1 S17N(+)] forms of D. discoideum Rap1. The rates of phagocytosis of bacteria and latex beads were significantly higher in Rap1 WT(+) and Rap1 G12T(+) cells and were reduced in Rap1 S17N(+) cells. The addition of inhibitors of protein kinase A, protein kinase G, protein tyrosine kinase, or phosphatidylinositide 3-kinase did not affect phagocytosis rates in wild-type cells. In contrast, the addition of U73122 (a phospholipase C inhibitor), calphostin C (a protein kinase C inhibitor), and BAPTA-AM (an intracellular Ca2+ chelator) reduced phagocytosis rates by 90, 50, and 65%, respectively, suggesting both arms of the phospholipase C signaling pathways played a role in this process. Other protein kinase C–specific inhibitors, such as chelerythrine and bisindolylmaleimide I, did not reduce phagocytosis rates in control cells, suggesting calphostin C was affecting phagocytosis by interfering with a protein containing a diacylglycerol-binding domain. The addition of calphostin C did not reduce phagocytosis rates in Rap1 G12T(+) cells, suggesting that the putative diacylglycerol-binding protein acted upstream in a signaling pathway with Rap1. Surprisingly, macropinocytosis was significantly reduced in Rap1 WT(+) and Rap1 G12T(+) cells compared with control cells. Together our results suggest that Rap1 and Ca2+ may act together to coordinate important early events regulating phagocytosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wasp is an impor tant venomous animal that can induce human fatalities. Aortic thrombosis and cerebral infarction are major clinical symptoms after massive wasp stings but the reason leading to the envenomation manifestation is still not known. In this paper, a toxin protein is purified and characterized by Sephadex G-75 gel filtration, CM-Sephadex C-25 cationic exchange and fast protein liquid chromatography (FPLC) from the venom of the wasp, Vespa magnifica (Smith). This protein, named magnifin, contains phospholipase-like activity and induces platelet aggregation. The cDNA encoding magnifin is cloned from the venom sac cDNA library of the wasp. The predicted protein was deduced from the cDNA with a sequence composed of 337 amino acid residues. Magnifin is very similar to other phospholipase A(1) (PLA(1)), especially to other wasp allergen PLA(1). Magnifin can activate platelet aggregation and induce thrombosis in vivo. The current results proved that PLA(1) in wasp venom could be contributable to aortic thrombosis after massive wasp stings. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several biochemical and biological activities such as phospholipase A(2), arginine esterase, proteolytic, L-amino acid oxidase, 5'nucleotidase, acetylcholinesterase, thrombin-like, anticoagulant, and hemorrhagic activities were determined for whole desiccated venom of Trimeresurus jerdonii. An acidic phospholipase (named TJ-PLA(2)) was purified by anionic exchange chromatography, gel filtration, and reverse phase HPLC. TJ-PLA(2) had a molecular weight of 16,000 and a pI of 4.8. TJ-PLA(2) was non-lethal to mice up to an i.p. dose of 15 mg/kg body weight and lacked neurotoxicity and myotoxicity. It induced edema in the footpads of mice. The purified enzyme inhibited ADP- and collagen-induced human platelet aggregation in a manner which was both dose- and time-dependent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The BDNF receptor tyrosine kinase, TrkB, underlies nervous system function in both health and disease. Excessive activation of TrkB caused by status epilepticus promotes development of temporal lobe epilepsy (TLE), revealing TrkB as a therapeutic target for prevention of TLE. To circumvent undesirable consequences of global inhibition of TrkB signaling, we implemented a novel strategy aimed at selective inhibition of the TrkB-activated signaling pathway responsible for TLE. Our studies of a mouse model reveal that phospholipase Cγ1 (PLCγ1) is the dominant signaling effector by which excessive activation of TrkB promotes epilepsy. We designed a novel peptide (pY816) that uncouples TrkB from PLCγ1. Treatment with pY816 following status epilepticus inhibited TLE and prevented anxiety-like disorder yet preserved neuroprotective effects of endogenous TrkB signaling. We provide proof-of-concept evidence for a novel strategy targeting receptor tyrosine signaling and identify a therapeutic with promise for prevention of TLE caused by status epilepticus in humans.