793 resultados para lens array
Resumo:
In recent years, many experimental and theoretical research groups worldwide have actively worked on demonstrating the use of liquid crystals (LCs) as adaptive lenses for image generation, waveform shaping, and non-mechanical focusing applications. In particular, important achievements have concerned the development of alternative solutions for 3D vision. This work focuses on the design and evaluation of the electro-optic response of a LC-based 2D/3D autostereoscopic display prototype. A strategy for achieving 2D/3D vision has been implemented with a cylindrical LC lens array placed in front of a display; this array acts as a lenticular sheet with a tunable focal length by electrically controlling the birefringence. The performance of the 2D/3D device was evaluated in terms of the angular luminance, image deflection, crosstalk, and 3D contrast within a simulated environment. These measurements were performed with characterization equipment for autostereoscopic 3D displays (angular resolution of 0.03 ).
Resumo:
In this report a new automated optical test for next generation of photonic integrated circuits (PICs) is provided by the test-bed design and assessment. After a briefly analysis of critical problems of actual optical tests, the main test features are defined: automation and flexibility, relaxed alignment procedure, speed up of entire test and data reliability. After studying varied solutions, the test-bed components are defined to be lens array, photo-detector array, and software controller. Each device is studied and calibrated, the spatial resolution, and reliability against interference at the photo-detector array are studied. The software is programmed in order to manage both PIC input, and photo-detector array output as well as data analysis. The test is validated by analysing state-of-art 16 ports PIC: the waveguide location, current versus power, and time-spatial power distribution are measured as well as the optical continuity of an entire path of PIC. Complexity, alignment tolerance, time of measurement are also discussed.
Resumo:
In this work the concept of integrating tracking in concentrating photovoltaics is briefly summarized and possible fields of application are classified. A previously proposed system setup relies on the use of two rotational symmetric laterally moving plano-convex lenses to achieve 500× concentration over an angular range of ±24 ◦ . However, the circular lens apertures are less suitable for application in lens array structures. A new design algorithm based on the Simultaneous Multiple Surface algorithm in three dimensions (SMS3D) demonstrates the ability to address this problem. Performance simulations show that the resulting non-rotational symmetric design outperforms its conventional rotational symmetric counterpart
Resumo:
Lenticular array products have experienced a growing interest in the last decade due to the very wide range of applications they can cover. Indeed, this kind of lenses can create different effects on a viewing image such as 3D, flips, zoom, etc. In this sense, lenticular based on liquid crystals (LC) technology is being developed with the aim of tuning the lens profiles simply by controlling the birefringence electrically. In this work, a LC lenticular lens array has been proposed to mimic a GRIN lenticular lens array but adding the capability of tuning their lens profiles. Comb control electrodes have been designed as pattern masks for the ITO on the upper substrate. Suitable high resistivity layers have been chosen to be deposited on the control electrode generating an electric field gradient between teeth of the same electrode. Test measurements have allowed us to demonstrate that values of phase retardations and focal lengths, for an optimal driving waveform, are fairly in agreement. In addition, results of focusing power of tuneable lenses were compared to those of conventional lenses. The behaviour of both kinds of lenses has revealed to be mutually similar for focusing collimated light and for refracting images.
Resumo:
B0218+357 è un blazar soggetto al lensing che si trova a z=0.944. Questo sistema consiste in due componenti compatte (A e B) e un anello di Einstein. Recentemente è stato associato ad una sorgente gamma soggetta a burst osservata con il satellite Fermi-LAT. Questo blazar ha mostrato una forte variabilità in banda γ da agosto a settembre del 2012. Gli episodi di variabilità osservati hanno consentito di misurare per la prima volta in banda gamma il ritardo temporale previsto dalla teoria del lensing gravitazionale. Le osservazioni in banda gamma sono state seguite da un programma di monitoring con il Very Long Baseline Array (VLBA) in banda radio con lo scopo di verificare l’esistenza di una correlazione tra l’emissione nelle due bande. In questa Tesi tali osservazioni radio sono state analizzate con lo scopo di studiare la variabilità di B0218+357 e, quindi, attestare la connessione tra l’emissione alle alte energie e quella in banda radio. L’obiettivo principale di questo lavoro di Tesi è quello di studiare l’evoluzione della densità di flusso, dell’indice spettrale e della morfologia delle immagini A e B e delle loro sottocomponenti. I dati analizzati sono stati ottenuti con l’interferometro VLBA a tre frequenze di osser- vazione: 2.3, 8.4 GHz (4 epoche con osservazioni simultanee alle due frequenze) e 22 GHz (16 epoche). Le osservazioni hanno coperto un periodo di circa due mesi, subito successivo al flare in banda gamma. La riduzione dei dati è stata effettuata con il pacchetto AIPS. Dall’analisi delle immagini, nella componente B è possibile riconoscere la tipica struttura nucleo-getto chiaramente a tutte e tre le frequenze, invece nella componente A questa struttura è identificabile solo a 22 GHz. A 2.3 e 8.4 GHz la risoluzione non è sufficiente a risolvere nucleo e getto della componente A e l’emissione diffusa risulta dominante. Utilizzando il metodo dello stacking sulle immagini a 2.3 GHz, è stato possibile rivelare le parti più brillanti dell’Einstein ring associato a questa sorgente. Questo è stato possibile poiché la sorgente non ha mostrato alcun segno di variabilità significativa né di struttura né di flusso nelle componenti. Quindi dall’analisi delle curve di luce delle due componenti A e B non è emersa una variabilità significativa chiaramente associabile al flare osservato in banda gamma. Per verificare questo risultato, le curve di luce ottenute sono state confrontate con le osservazioni del radio telescopio OVRO (15 GHz) nel periodo corrispondente alle nostre osservazioni. La curva di luce OVRO è risultata in pieno accordo con le curve di luce ottenute durante questo lavoro di tesi e ha confermato che B0218+257 non ha mostrato un’importante attività radio nel periodo delle osservazioni VLBA. In definitiva, la mancanza di variabilità radio associata a quella osservata nei raggi gamma può essere dovuta al fatto che la regione in cui si è originato il flare gamma è otticamente spessa alle lunghezze d’onda radio, oppure non esiste una precisa correlazione tra le due emissioni, rimanendo quindi un problema aperto da investigare.
Resumo:
We present theory and simulations for a spectral narrowing scheme for laser diode arrays (LDAs) that employs optical feedback from a diffraction grating. We calculate the effect of the so-called smile of the LDA and show that it is possible to reduce the effect by using a cylindrical lens set at an angle to the beam. The scheme is implemented on a 19-element LDA with smile of 7.6 mu m and yields frequency narrowing from a free-running width of 2 to 0.15 nm. The experimental results are in good agreement with the theory. (c) 2005 Optical Society of America.
Resumo:
In about 50% of first trimester spontaneous abortion the cause remains undetermined after standard cytogenetic investigation. We evaluated the usefulness of array-CGH in diagnosing chromosome abnormalities in products of conception from first trimester spontaneous abortions. Cell culture was carried out in short- and long-term cultures of 54 specimens and cytogenetic analysis was successful in 49 of them. Cytogenetic abnormalities (numerical and structural) were detected in 22 (44.89%) specimens. Subsequent, array-CGH based on large insert clones spaced at ~1 Mb intervals over the whole genome was used in 17 cases with normal G-banding karyotype. This revealed chromosome aneuplodies in three additional cases, giving a final total of 51% cases in which an abnormal karyotype was detected. In keeping with other recently published works, this study shows that array-CGH detects abnormalities in a further ~10% of spontaneous abortion specimens considered to be normal using standard cytogenetic methods. As such, array-CGH technique may present a suitable complementary test to cytogenetic analysis in cases with a normal karyotype.
Resumo:
We have modeled, fabricated, and characterized superhydrophobic surfaces with a morphology formed of periodic microstructures which are cavities. This surface morphology is the inverse of that generally reported in the literature when the surface is formed of pillars or protrusions, and has the advantage that when immersed in water the confined air inside the cavities tends to expel the invading water. This differs from the case of a surface morphology formed of pillars or protrusions, for which water can penetrate irreversibly among the microstructures, necessitating complete drying of the surface in order to again recover its superhydrophobic character. We have developed a theoretical model that allows calculation of the microcavity dimensions needed to obtain superhydrophobic surfaces composed of patterns of such microcavities, and that provides estimates of the advancing and receding contact angle as a function of microcavity parameters. The model predicts that the cavity aspect ratio (depth-to-diameter ratio) can be much less than unity, indicating that the microcavities do not need to be deep in order to obtain a surface with enhanced superhydrophobic character. Specific microcavity patterns have been fabricated in polydimethylsiloxane and characterized by scanning electron microscopy, atomic force microscopy, and contact angle measurements. The measured advancing and receding contact angles are in good agreement with the predictions of the model. (C) 2010 American Institute of Physics. [doi:10.1063/1.3466979]
Resumo:
We report on some unusual behavior of the measured current-voltage characteristics (CVC) in artificially prepared two-dimensional unshunted array of overdamped Nb-AlO(x)-Nb Josephson junctions. The obtained nonlinear CVC are found to exhibit a pronounced (and practically temperature independent) crossover at some current I(cr) = (1/2 beta(C)-1)I(C) from a resistance R dominated state with V(R)=R root I(2)-I(C)(2) below I(cr) to a capacitance C dominated state with V(C) = root(h) over bar /4eC root I-I(C) above I(cr). The origin of the observed behavior is discussed within a single-plaquette approximation assuming the conventional resistively shunted junction model with a finite capacitance and the Ambegaokar-Baratoff relation for the critical current of the single junction. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3407566]
Resumo:
We report on a simple and accurate method for determination of thermo-optical and spectroscopic parameters (thermal diffusivity, temperature coefficient of the optical path length change, pump and fluorescence quantum efficiencies, thermal loading, thermal lens focal length, etc) of relevance in the thermal lensing of end-pumped neodymium lasers operating at 1.06- and 1.3-mu m channels. The comparison between thermal lensing observed in presence and absence of laser oscillation has been used to elucidate and evaluate the contribution of quantum efficiency and excited sate absorption processes to the thermal loading of Nd: YAG lasers. (c) 2008 Optical Society of America.
Resumo:
A recently developed thermal lens spectrometry configuration has been used to study CdSe/ZnS core-shell quantum dots (QDs) suspended in toluene and tetrahydrofuran (THF) solvents. The special features of this configuration make it very attractive to measure fluorescence quantum yield (eta) excitation spectrum since it simplifies the measurement procedure and consequently improve the accuracy. Furthermore, the precision reached is much higher than in conventional photoluminescence (PL) technique. Two methods, called reference sample and multiwavelength have been applied to determine eta, varying excitation wavelength in the UV-visible region (between 335-543 nm). The eta and PL spectra are practically independent of the excitation wavelength. For CdSe/ZnS QDs suspended in toluene we have obtained eta=76 +/- 2%. In addition, the aging effect on eta and PL has been studied over a 200 h period for QDs suspended in THF. (C) 2010 American Institute of Physics. [doi:10.1063/1.3343517]
Resumo:
In this work, thermal and optical properties of the commercial Q-98 neodymium-doped phosphate glass have been measured at low temperature, from 50 to 300 K. The time-resolved thermal lens spectrometry together with the optical interferometry and the thermal relaxation calorimetry methods were used to investigate the glass athermal characteristics described by the temperature coefficient of the optical path length change, ds/dT. The thermal diffusivity was also determined, and the temperature coefficients of electronic polarizability, linear thermal expansion, and refractive index were calculated and used to explain ds/dT behavior. ds/dT measured via thermal lens method was found to be zero at 225 K. The results provided a complete characterization of the thermo-optical properties of the Q-98 glass, which may be useful for those using this material for diode-pumped solid-state lasers. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3234396]
Resumo:
A recently developed dual-beam configuration that optimizes the thermal lens technique has been used to obtain the absorption spectrum of pure water from 350 to 528 nm. Our results indicate the minimum linear absorption coefficient smaller than 2 X 10(-5) cm(-1) between 360 and 400 nm. This value is lower than previous literature data, and it is blueshifted. Absorption coefficients as small as 2 X 10(-7) cm(-1) can be measured for water using 1 W of excitation power. A detection limit of similar to 6 X 10(-9) cm(-1) (P=1 W) for CCl(4) was estimated, which represents, to the best of our knowledge, the highest sensitivity obtained in small absorption measurements in liquids. (C) 2009 Optical Society of America
Resumo:
The Z-scan and thermal-lens techniques have been used to obtain the energy transfer upconversion parameter in Nd(3+)-doped materials. A comparison between these methods is done, showing that they are independent and provide similar results. Moreover, the advantages and applicability of each one are also discussed. The results point to these approaches as valuable alternative methods because of their sensitivity, which allows measurements to be performed in a pump-power regime without causing damage to the investigated material. (C) 2009 Optical Society of America
Resumo:
In this work the time resolved thermal lens method is combined with interferometric technique, the thermal relaxation calorimetry, photoluminescence and lifetime measurements to determine the thermo physical properties of Nd(2)O(3) doped sodium zincborate glass as a function of temperature up to the glass transition region. Thermal diffusivity, thermal conductivity, fluorescence quantum efficiency, linear thermal expansion coefficient and thermal coefficient of electronic polarizability were determined. In conclusion, the results showed the ability of thermal lens and interferometric methods to perform measurements very close to the phase transition region. These techniques provide absolute values for the measured physical quantities and are advantageous when low scan rates are required. (c) 2008 Optical Society of America