509 resultados para jellyfish blooms


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coastal marine ecosystems are among the most impacted globally, attributable to individual and cumulative effects of human disturbance. Anthropogenic nutrient loading is one stressor that commonly affects nearshore ecosystems, including seagrass beds, and has positive and negative effects on the structure and function of coastal systems. An additional, previously unexplored mechanistic pathway through which nutrients may indirectly influence nearshore systems is by driving blooms of benthic jellyfish. My dissertation research, conducted on Abaco Island, Bahamas, focused on elucidating the role that benthic jellyfish have in structuring systems in which they are common (i.e., seagrass beds), and explored mechanistic processes that may drive blooms of this taxa. ^ To establish that human disturbances (e.g., elevated nutrient availability) may drive increased abundance and size of benthic jellyfish, Cassiopea spp., I conducted surveys in human-impacted and unimpacted coastal sites. Jellyfish were more abundant (and larger) from human-impacted areas, positively correlated to elevated nutrient availability. In order to elucidate mechanisms linking Cassiopea spp. with elevated nutrients, I evaluated whether zooxanthellae from Cassiopea were higher from human-disturbed systems, and whether Cassiopea exhibited increased size following nutrient input. I demonstrated that zooxanthellae population densities were elevated in human-impacted sites, and that nutrients led to positive jellyfish growth. ^ As heightened densities of Cassiopea jellyfish may exert top-down and bottom-up controls on flora and fauna in impacted seagrass beds, I sought to examine ecological responses to Cassiopea. I evaluated whether there was a relationship between high Cassiopea densities and lower benthic fauna abundance and diversity in shallow seagrass beds. I found that Cassiopea have subtle effects on benthic fauna. However, through an experiment conducted in a seagrass bed in which nutrients and Cassiopea were added, I demonstrated that Cassiopea can result in seagrass habitat modification, with negative consequences for benthic fauna. ^ My dissertation research demonstrates that increased human-driven benthic jellyfish densities may have indirect and direct effects on flora and fauna of coastal marine systems. This knowledge will advance our understanding of how human disturbances shift species interactions in coastal ecosystems, and will be critical for effective management of jellyfish blooms.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coastal marine ecosystems are among the most impacted globally, attributable to individual and cumulative effects of human disturbance. Anthropogenic nutrient loading is one stressor that commonly affects nearshore ecosystems, including seagrass beds, and has positive and negative effects on the structure and function of coastal systems. An additional, previously unexplored mechanistic pathway through which nutrients may indirectly influence nearshore systems is by driving blooms of benthic jellyfish. My dissertation research, conducted on Abaco Island, Bahamas, focused on elucidating the role that benthic jellyfish have in structuring systems in which they are common (i.e., seagrass beds), and explored mechanistic processes that may drive blooms of this taxa. To establish that human disturbances (e.g., elevated nutrient availability) may drive increased abundance and size of benthic jellyfish, Cassiopea spp., I conducted surveys in human-impacted and unimpacted coastal sites. Jellyfish were more abundant (and larger) from human-impacted areas, positively correlated to elevated nutrient availability. In order to elucidate mechanisms linking Cassiopea spp. with elevated nutrients, I evaluated whether zooxanthellae from Cassiopea were higher from human-disturbed systems, and whether Cassiopea exhibited increased size following nutrient input. I demonstrated that zooxanthellae population densities were elevated in human-impacted sites, and that nutrients led to positive jellyfish growth. As heightened densities of Cassiopea jellyfish may exert top-down and bottom-up controls on flora and fauna in impacted seagrass beds, I sought to examine ecological responses to Cassiopea. I evaluated whether there was a relationship between high Cassiopea densities and lower benthic fauna abundance and diversity in shallow seagrass beds. I found that Cassiopea have subtle effects on benthic fauna. However, through an experiment conducted in a seagrass bed in which nutrients and Cassiopea were added, I demonstrated that Cassiopea can result in seagrass habitat modification, with negative consequences for benthic fauna. My dissertation research demonstrates that increased human-driven benthic jellyfish densities may have indirect and direct effects on flora and fauna of coastal marine systems. This knowledge will advance our understanding of how human disturbances shift species interactions in coastal ecosystems, and will be critical for effective management of jellyfish blooms.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In recent years a global increase in jellyfish (i.e. Cnidarians and Ctenophores) abundance and a rise in the recurrence of jellyfish outbreak events have been largely debated, but a general consensus on this matter has not been achieved yet. Within this debate, it has been generally recognised that there is a lack of reliable data that could be analysed and compared to clarify whether indeed jellyfish are increasing throughout the world ocean as a consequence of anthropogenic impact and hydroclimatic variability. Here we describe different jellyfish data sets produced within the EU program EUROBASIN, which have been assembled with the aim of presenting an up to date overview on the diversity and standing stocks of North Atlantic jellyfish. Abundance and species composition were determined in samples collected in the epipelagic layer (0- 200m), using a net well adapted to quantitatively catching gelatinous zooplankton. The samples were collected in spring-summer (April-August) 2010-2013, in inshore and offshore North Atlantic waters, between 59-68LatN and 62W-5ELong. Jellyfish were also identified and counted in samples opportunistically collected by other sampling gears in the same region and in two coastal stations in the Bay of Biscay and in the Gulf of Cadiz. Continuous Plankton Recorder (CPR) samples collected in 2009-2012 were re-analysed with the aim of identifying the time and location of jellyfish blooms across the North Atlantic basin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of "jellyfish blooms" provides important data toward determining the causes and consequences of these phenomena; however, the definition of "bloom" remains controversial and different concepts have been adopted in recent works. By addressing the biological and convenience definitions, this study tested the adequacy of the different concepts of "blooms" for the Class Staurozoa (Cnidaria). From seasonal monitoring data of some species of Staurozoa, we concluded that stauromedusae bloom if we used the biological concept of "bloom", which considers the life cycle and resulting changes in the abundances of these animals. By contrast, the small, benthic, inconspicuous, and non-harmful stauromedusae do not bloom if we use the convenience concept of "bloom", which constrains the events to those that humans can observe and that cause damage to human activities. In other words, the same group of organisms either is or is not capable of blooming depending on which concept of "bloom" is used. In fact, previous literature has suggested that Staurozoa could not bloom, which indicates that the study of "jellyfish blooms" can be biased, considering convenience rather than biological reasoning.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although anthropogenic infuences such as global warming, overfishing, and eutrophication may contribute to jellyfish blooms, little is known about the effects of ocean acidification on jellyfish. Most medusae form statoliths of calcium sulfate hemihydrate that are components of their balance organs (statocysts). This study was designed to test the effects of pH (7.9, within the average current range, 7.5, expected by 2100, and 7.2, expected by 2300) combined with two temperatures (9 and 15°C) on asexual reproduction and statolith formation of the moon jellyfish, Aurelia labiata. Polyp survival was 100% after 122 d in seawater in all six temperature and pH combinations. Because few polyps at 9°C strobilated, and temperature effects on budding were consistent with published results, we did not analyze data from those three treatments further. At 15°C, there were no significant effects of pH on the numbers of ephyrae or buds produced per polyp or on the numbers of statoliths per statocyst; however, statolith size was signi?cantly smaller in ephyrae released from polyps reared at low pH. Our results indicate that A. labiata polyps are quite tolerant of low pH, surviving and reproducing asexually even at the lowest tested pH; however, the effects of small statoliths on ephyra fitness are unknown. Future research on the behavior of ephyrae with small statoliths would further our understanding of how ocean acidi?cation may affect jellyfish survival in nature.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work attempts to establish dermatological identification patterns for Brazilian cnidarian species and a probable correlation with envenoming severity. In an observational prospective study, one hundred and twenty-eight patients from the North Coast region of São Paulo State, Brazil were seen between 2002 and 2008. About 80% of these showed only local effects (erythema, edema, and pain) with small, less than 20 cm, oval or round skin marks and impressions from small tentacles. Approximately 20% of the victims had long, more than 20 cm, linear and crossed marks with frequent systemic phenomena, such as malaise, vomiting, dyspnea, and tachycardia. The former is compatible with the common hydromedusa from Southeast and Southern Brazil (Olindias sambaquiensis). The long linear marks with intense pain and systemic phenomena are compatible with envenoming by the box jellyfish Tamoya haplonema and Chiropsalmus quadrumanus and the hydrozoan Portuguese man-of-war (Physalis physalis). There was an association between skin marks and probable accident etiology. This simple observation rule can be indicative of severity, as the Cubozoa Class (box jellyfish) and Portuguese man-of-war cause the most severe accidents. In such cases, medical attention, including intensive care, is important, as the systemic manifestations can be associated with death.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development, validation, comparison and evaluation of analytical methods for marine toxins rely on the availability of toxic material. Within the project JACUMAR PSP, our interest is mainly focused on autochthonous bivalve species with the toxic profile of Alexandrium minutum, since this is the principal species involved regionally in PSP outbreaks. Mussels and oysters were exposed during few days in the harbor of Vilanova i la Geltrú, to blooms reaching a maximum A. minutum concentration of 200,000 cells L-1 in 2008, and 40,000 and 800,000 cells L-1, in 2009. Mussels, oysters and clams were exposed to one bloom of 22,000 cells L-1 in the harbor of Cambrils in 2009. In all situations higher toxic levels analyzed by HPLC-FD with postcolumn oxidation were observed in mussels (i.e. 1,200-2,500 μg eq. STX kg-1) than in oysters (i.e. 60-800 μg eq. STX kg-1) exposed to the same bloom. Blooms with higher concentrations of A. minutum did not correspond to higher levels of PSP toxins in bivalves. These differences may be explained by differences in A. minutum population dynamics, toxin production or in the physiological state or behaviour of shellfish. These results confirm that mussels concentrate more PSP toxins from A. minutum than oysters and clams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El actual incremento de medusas en las costas mediterráneas, percibido como un factor negativo en la calidad de las playas, supone un factor reductor de la demanda turística en las ubicaciones costeras, sobre todo en aquellas más afectadas por éstas proliferaciones. Debido a que la época de mayor presencia de fitoplacton disponible (principal fuente de alimento de las medusas), relacionada a la alta incidencia lumínica, coincide con la temporada alta de turismo en el verano; las notificaciones de incidencias por picaduras de medusa en esta época son frecuentes. Ejemplo de ello, es el caso de Denia (Alicante, España) donde, desde 2008, se ha detectado un considerable aumento de incidencias sanitarias a causa de picaduras de medusa, paralela a la aparición de la especie invasora de cubomedusa Carybdea marsupialis (Bordehore et al, 2011). En este estudio se ha realizado una valoración económica de la playa como un bien ambiental recreativo, mediante encuestas semi-estructuradas elaboradas por Paulo Nunes (CIESM), aplicadas a una muestra inicial de 300 individuos; y evaluado cual sería el impacto social y económico en la valoración ambiental de Denia, si las proliferaciones de medusa no se estabilizaran. Se ha estimado el valor económico del impacto sicial causado por las bioinvasiones marinas en las playas recreacionistas según Nunes and Van den Bergh (2004) y Nunes and Markandya (2008); el método que también ha sido aplicado en el mismo estudio aplicado en Israel (B. Galil, J. Gowdy and P. Nunes 2012) y en Cataluña (2013, Paulo Nunes, M. Loureiro, L. Piñol, S. Sastre, L. Voltaire). En ambos casos los resultados en el impacto económico son considerables pero menores a los esperados, al igual que en los resultados obtenidos en Denia (Alicante).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Algal blooms are naturally occurring phenomena in the aquatic environment. These blooms cause mass mortalities of wild and farmed fish and shellfish, human intoxications which sometimes result in death, alteration of marine trophic structure through adverse effects on larvae and other life history stages of commercially important species and death of marine animals. Occurrences of harmful algal blooms and associated mortality have been reported along the coastal waters of India since the early period of the last century. The present study was taken up to study the dynamics of major phytoplankton blooms, which occur along the Kerala coast. The results of quantitative and qualitative analysis of phytoplankton in the coastal waters of Vizhinjam and Chombala, their species diversity and community structure is presented and the major algal blooms recorded along the coast of Kerala during the study period is described and their occurrence is related to the hydrographic and meteorological variations. There is a clear evident from these works in the Indian region that the fishes avoid areas where these harmful algae bloom, either due to the toxicity or due to some irritant property of the chemicals secreted by the algae. Taxonomic diversity studies indicated a change in the community structure of commercial finfishes, crustaceans and molluscs due to the bloom of C.marina and funnel plots indicated the deviation in taxonomic distinctness during the bloom period from theoretical mean for the region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dept. of Marine Biology, Microbiology and Biochemistry,CUSAT