992 resultados para iterative method
Resumo:
A parameter-free variational iterative method is proposed for scattering problems. The present method yields results that are far better, in convergence, stability and precision, than any other momentum space method. Accurate result is obtained for the atomic exponential (Yukawa) potential with an estimated error of less than 1 in 1015 (1010) after some 13 (10) iterations.
Resumo:
This work develops two approaches based on the fuzzy set theory to solve a class of fuzzy mathematical optimization problems with uncertainties in the objective function and in the set of constraints. The first approach is an adaptation of an iterative method that obtains cut levels and later maximizes the membership function of fuzzy decision making using the bound search method. The second one is a metaheuristic approach that adapts a standard genetic algorithm to use fuzzy numbers. Both approaches use a decision criterion called satisfaction level that reaches the best solution in the uncertain environment. Selected examples from the literature are presented to compare and to validate the efficiency of the methods addressed, emphasizing the fuzzy optimization problem in some import-export companies in the south of Spain. © 2012 Brazilian Operations Research Society.
Resumo:
We present a method (ENERGI) for extracting energy-like quantities from a data base of protein structures. In this paper, we use the method to generate pairwise additive amino acid "energy" scores. These scores are obtained by iteration until they correctly discriminate a set of known protein folds from decoy conformations. The method succeeds in lattice model tests and in the gapless threading problem as defined by Maiorov and Crippen [Maiorov, V. N. & Crippen, G. M. (1992) J. Mol. Biol. 227, 876-888]. A more challenging test of threading a larger set of test proteins derived from the representative set of Hobohm and Sander [Hobohm, U. & Sander, C. (1994) Protein Sci. 3, 522-524] is used as a "workbench" for exploring how the ENERGI scores depend on their parameter sets.
Resumo:
Vita.
Resumo:
In this study, we investigate the problem of reconstruction of a stationary temperature field from given temperature and heat flux on a part of the boundary of a semi-infinite region containing an inclusion. This situation can be modelled as a Cauchy problem for the Laplace operator and it is an ill-posed problem in the sense of Hadamard. We propose and investigate a Landweber-Fridman type iterative method, which preserve the (stationary) heat operator, for the stable reconstruction of the temperature field on the boundary of the inclusion. In each iteration step, mixed boundary value problems for the Laplace operator are solved in the semi-infinite region. Well-posedness of these problems is investigated and convergence of the procedures is discussed. For the numerical implementation of these mixed problems an efficient boundary integral method is proposed which is based on the indirect variant of the boundary integral approach. Using this approach the mixed problems are reduced to integral equations over the (bounded) boundary of the inclusion. Numerical examples are included showing that stable and accurate reconstructions of the temperature field on the boundary of the inclusion can be obtained also in the case of noisy data. These results are compared with those obtained with the alternating iterative method.
Resumo:
In this article, an iterative algorithm based on the Landweber-Fridman method in combination with the boundary element method is developed for solving a Cauchy problem in linear hydrostatics Stokes flow of a slow viscous fluid. This is an iteration scheme where mixed well-posed problems for the stationary generalized Stokes system and its adjoint are solved in an alternating way. A convergence proof of this procedure is included and an efficient stopping criterion is employed. The numerical results confirm that the iterative method produces a convergent and stable numerical solution. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007
Resumo:
An iterative method for reconstruction of the solution to a parabolic initial boundary value problem of second order from Cauchy data is presented. The data are given on a part of the boundary. At each iteration step, a series of well-posed mixed boundary value problems are solved for the parabolic operator and its adjoint. The convergence proof of this method in a weighted L2-space is included.
Resumo:
An iterative method for the reconstruction of a stationary three-dimensional temperature field, from Cauchy data given on a part of the boundary, is presented. At each iteration step, a series of mixed well-posed boundary value problems are solved for the heat operator and its adjoint. A convergence proof of this method in a weighted L 2-space is include
Resumo:
The generalized Wiener-Hopf equation and the approximation methods are used to propose a perturbed iterative method to compute the solutions of a general class of nonlinear variational inequalities.
Resumo:
In this paper we give an iterative method to compute the principal n-th root and the principal inverse n-th root of a given matrix. As we shall show this method is locally convergent. This method is analyzed and its numerical stability is investigated.
Resumo:
Mathematics Subject Classification: 26A33, 31B10
Resumo:
2000 Mathematics Subject Classification: 47H04, 65K10.