919 resultados para invertebrates
Resumo:
The present study used ERPs to compare processing of fear-relevant (FR) animals (snakes and spiders) and non-fear-relevant (NFR) animals similar in appearance (worms and beetles). EEG was recorded from 18 undergraduate participants (10 females) as they completed two animal-viewing tasks that required simple categorization decisions. Participants were divided on a post hoc basis into low snake/spider fear and high snake/spider fear groups. Overall, FR animals were rated higher on fear and elicited a larger LPC. However, individual differences qualified these effects. Participants in the low fear group showed clear differentiation between FR and NFR animals on subjective ratings of fear and LPC modulation. In contrast, participants in the high fear group did not show such differentiation between FR and NFR animals. These findings suggest that the salience of feared-FR animals may generalize on both a behavioural and electro-cortical level to other animals of similar appearance but of a non-harmful nature.
Resumo:
Dry river beds are common worldwide and are rapidly increasing in extent due to the effects of water management and prolonged drought periods due to climate change. While attention has been given to the responses of aquatic invertebrates to drying rivers, few studies exist on the terrestrial invertebrates colonizing dry river beds. Dry river beds are physically harsh and they often differ substantially in substrate, topography, microclimate and inundation frequency from adjacent riparian zones. Given these differences, we predicted that dry river beds provide a unique habitat for terrestrial invertebrates, and that their assemblage composition differs from that in adjacent riparian zones. Dry river beds and riparian zones in Australia and Italy were sampled for terrestrial invertebrates with pitfall traps. Sites differed in substrate type, climate and flow regime. Dry river beds contained diverse invertebrate assemblages and their composition was consistently different from adjacent riparian zones, irrespective of substrate, climate or hydrology. Although some taxa were shared between dry river beds and riparian zones, 66 of 320 taxa occurred only in dry river beds. Differences were due to species turnover, rather than shifts in abundance, indicating that dry river bed assemblages are not simply subsets of riparian assemblages. Some spatial patterns in invertebrate assemblages were associated with environmental variables (irrespective of habitat type), but these associations were statistically weak. We suggest that dry river beds are unique habitats in their own right. We discuss potential human stressors and management issues regarding dry river beds and provide recommendations for future research.
Resumo:
Invasive macrophyte species are a threat to native biodiversity and often grow to nuisance levels, therefore, making control options necessary. Macrophyte control can have pronounced impacts on littoral fish by reducing habitat heterogeneity and the loss of profitable (high density of invertebrates) foraging areas. Yet, there is little known about the impacts of macrophyte removal on invertebrates themselves. We conducted a macrophyte removal experiment, that is the cutting of channels into dense macrophyte beds, to investigate the impact of mechanical macrophyte control on invertebrate and fish communities in a littoral zone dominated by the invasive macrophyte Lagarosiphon major. The effect of macrophyte removal had only a temporary effect on macrophyte areal cover (4 months). Nevertheless, the treatment increased light penetration significantly. However, we could not detect any difference in epiphyton biomass. Invertebrate biomass increased in macrophyte stands 4 months after treatment and there was a shift in the invertebrate community composition. Mechanical control had no effect on invertebrate biodiversity. The higher invertebrate biomass did not translate into a higher fish density in the treated areas. The results of this study indicated that partial mechanical removal is a suitable option to control unwanted macrophyte stands.
Resumo:
This report presents information on the life history, diet, abundance and distribution, and length-frequency distributions of five invertebrates in Florida Bay, Everglades National Park. Collections were made with an otter trawl in basins on a bi-monthly basis. Non-parametric statistics were used to test spatial and temporal differences in the abundance of invertebrates when numbers were appropriate (i. e., $25). Invertebrate species are presented in four sections. The sections on Life History, and Diet were derived from the literature. The section on Abundance and Distribution consists of data from otter-trawl collections. In addition, comparisons with other studies are included here following our results. The section on Length-frequency Distributions consists of length measurements from all collections, except 1984-1985 when no measurements were taken. Length-frequency distributions were used, when possible, to estimate life stage captured, spawning times, recruitment into Florida Bay for those species which spawn outside the Bay, and growth. Additional material from the literature was added when appropriate. (PDF contains 39 pages)
Resumo:
All abalones belong to the genus Haliotis sensu latu, family Haliotidae. The 75 species known worldwide (Booloot ian et, al. 1962) are anatomically similar and all are adapted for attachment to hard substrates. Seven species are widely distributed along the coast of California (Cox 1962; Mottet 19781, of which several are important in the comercial and sport fisheries of the Pacific Southwest. (PDF has 19 pages.)
Resumo:
This profile covers life history and environmental requirements of both alewife (Alosa pseudoharengus) and blueback herring (Alosa aestivalis), since their distribution is overlapping and their morphology, ecological role, and environmental requirements are similar. The alewife is an anadromous species found in riverine, estuarine, and Atlantic coastal habitats, depending on life cycle stage, from Newfoundland (Winters et al. 1973) to Soutn Carolina (Berry 1964). Landlocked populations are i n the Great Lakes, Finger Lakes, and many other freshwater lakes (Bigelow and Sch roeder 1953; Scott and Crossman 1973). The blueback herring is an anadromous species found in riverine, estuarine, and Atlantic coastal habitats, depending on life stage cycle, from Nova Scotia to the St. Johns River, Florida (Hildebrand 1963)