945 resultados para introductory programming
Resumo:
In This work we present a Web-based tool developed with the aim of reinforcing teaching and learning of introductory programming courses. This tool provides support for teaching and learning. From the teacher's perspective the system introduces important gains with respect to the classical teaching methodology. It reinforces lecture and laboratory sessions, makes it possible to give personalized attention to the student, assesses the degree of participation of the students and most importantly, performs a continuous assessment of the student's progress. From the student's perspective it provides a learning framework, consisting in a help environment and a correction environment, which facilitates their personal work. With this tool students are more motivated to do programming
Resumo:
Tämä kandidaatintyö tutkii tietotekniikan perusopetuksessa keskeisen aiheen,ohjelmoinnin, alkeisopetusta ja siihen liittyviä ongelmia. Työssä perehdytään ohjelmoinnin perusopetusmenetelmiin ja opetuksen lähestymistapoihin, sekä ratkaisuihin, joilla opetusta voidaan tehostaa. Näitä ratkaisuja työssä ovat mm. ohjelmointikielen valinta, käytettävän kehitysympäristön löytäminen sekä kurssia tukevien opetusapuvälineiden etsiminen. Lisäksi kurssin läpivientiin liittyvien toimintojen, kuten harjoitusten ja mahdollisten viikkotehtävien valinta kuuluu osaksitätä työtä. Työ itsessään lähestyy aihetta tutkimalla Pythonin soveltuvuutta ohjelmoinnin alkeisopetukseen mm. vertailemalla sitä muihin olemassa oleviin yleisiin opetuskieliin, kuten C, C++ tai Java. Se tarkastelee kielen hyviä ja huonoja puolia, sekä tutkii, voidaanko Pythonia hyödyntää luontevasti pääasiallisena opetuskielenä. Lisäksi työ perehtyy siihen, mitä kaikkea kurssilla tulisi opettaa, sekä siihen, kuinka kurssin läpivienti olisi tehokkainta toteuttaa ja minkälaiset tekniset puitteet kurssin toteuttamista varten olisi järkevää valita.
Resumo:
In This work we present a Web-based tool developed with the aim of reinforcing teaching and learning of introductory programming courses. This tool provides support for teaching and learning. From the teacher's perspective the system introduces important gains with respect to the classical teaching methodology. It reinforces lecture and laboratory sessions, makes it possible to give personalized attention to the student, assesses the degree of participation of the students and most importantly, performs a continuous assessment of the student's progress. From the student's perspective it provides a learning framework, consisting in a help environment and a correction environment, which facilitates their personal work. With this tool students are more motivated to do programming
Resumo:
This study looked at the reasons why Vanier College students in computer programming are encountering difficulties in their learning process, Factors such as prior academic background, prior computer experience, mother tongue, and learning styles were examined to see how they play a role in students' success in programming courses. The initial research hypotheses were the following : Computer science students using understanding and integrating succeed better than students using following coding, or problem solving. Students using problem solving succeed better than those who use participating and enculturation. Students who use coding perform better than those who prefer participating ans enculturation. In addition, this study hoped to examine whether there is a gender difference in how students learn programming.||Résumé :||La présente étude a examiné les raisons pour lesquelles les étudiants en informatique du Collège Vanier rencontrent des difficultés dans leurs études en programmation. Les facteurs tel que le niveau des études précédentes, l'expérience en informatique, la langue maternelle e les méthodes d'apprentissage ont été considérés pour voir quel rôle ces facteurs jouent pour promouvoir la réussite dans les cours de programmation.Les hypothèses initiales de recherche ont été formulées comme suit : 1. Les étudiants en informatique utilisant la compréhension et l'intégration réussissent mieux que ceux utilisant «suivre», le codage ou la résolution des problèmes. 2, Les étudiants utilisant la résolution des problèmes réussissent mieux que ceux qui utilisent la participation dans la culture informatique. 3, Les étudiants utilisant le codage réussissent mieux que ceux qui utilisent la participation dans la culture informatique.
Resumo:
There is a growing interest of the Computer Science education community for including testing concepts on introductory programming courses. Aiming at contributing to this issue, we introduce POPT, a Problem-Oriented Programming and Testing approach for Introductory Programming Courses. POPT main goal is to improve the traditional method of teaching introductory programming that concentrates mainly on implementation and neglects testing. POPT extends POP (Problem Oriented Programing) methodology proposed on the PhD Thesis of Andrea Mendonça (UFCG). In both methodologies POPT and POP, students skills in dealing with ill-defined problems must be developed since the first programming courses. In POPT however, students are stimulated to clarify ill-defined problem specifications, guided by de definition of test cases (in a table-like manner). This paper presents POPT, and TestBoot a tool developed to support the methodology. In order to evaluate the approach a case study and a controlled experiment (which adopted the Latin Square design) were performed. In an Introductory Programming course of Computer Science and Software Engineering Graduation Programs at the Federal University of Rio Grande do Norte, Brazil. The study results have shown that, when compared to a Blind Testing approach, POPT stimulates the implementation of programs of better external quality the first program version submitted by POPT students passed in twice the number of test cases (professor-defined ones) when compared to non-POPT students. Moreover, POPT students submitted fewer program versions and spent more time to submit the first version to the automatic evaluation system, which lead us to think that POPT students are stimulated to think better about the solution they are implementing. The controlled experiment confirmed the influence of the proposed methodology on the quality of the code developed by POPT students
Resumo:
Pavel Azalov - Recursion is a powerful technique for producing simple algorithms. It is a main topics in almost every introductory programming course. However, educators often refer to difficulties in learning recursion, and suggest methods for teaching recursion. This paper offers a possible solutions to the problem by (1) expressing the recursive definitions through base operations, which have been predefined as a set of base functions and (2) practising recursion by solving sequences of problems. The base operations are specific for each sequence of problems, resulting in a smooth transitions from recursive definitions to recursive functions. Base functions hide the particularities of the concrete programming language and allows the students to focus solely on the formulation of recursive definitions.
Resumo:
In New Zealand and Australia, the BRACElet project has been investigating students' acquisition of programming skills in introductory programming courses. The project has explored students' skills in basic syntax, tracing code, understanding code, and writing code, seeking to establish the relationships between these skills. This ITiCSE working group report presents the most recent step in the BRACElet project, which includes replication of earlier analysis using a far broader pool of naturally occurring data, refinement of the SOLO taxonomy in code-explaining questions, extension of the taxonomy to code-writing questions, extension of some earlier studies on students' 'doodling' while answering exam questions, and exploration of a further theoretical basis for work that until now has been primarily empirical.
Resumo:
This thesis reports on the two main areas of our research: introductory programming as the traditional way of accessing informatics and cultural teaching informatics through unconventional pathways. The research on introductory programming aims to overcome challenges in traditional programming education, thus increasing participation in informatics. Improving access to informatics enables individuals to pursue more and better professional opportunities and contribute to informatics advancements. We aimed to balance active, student-centered activities and provide optimal support to novices at their level. Inspired by Productive Failure and exploring the concept of notional machine, our work focused on developing Necessity Learning Design, a design to help novices tackle new programming concepts. Using this design, we implemented a learning sequence to introduce arrays and evaluated it in a real high-school context. The subsequent chapters discuss our experiences teaching CS1 in a remote-only scenario during the COVID-19 pandemic and our collaborative effort with primary school teachers to develop a learning module for teaching iteration using a visual programming environment. The research on teaching informatics principles through unconventional pathways, such as cryptography, aims to introduce informatics to a broader audience, particularly younger individuals that are less technical and professional-oriented. It emphasizes the importance of understanding informatics's cultural and scientific aspects to focus on the informatics societal value and its principles for active citizenship. After reflecting on computational thinking and inspired by the big ideas of science and informatics, we describe our hands-on approach to teaching cryptography in high school, which leverages its key scientific elements to emphasize its social aspects. Additionally, we present an activity for teaching public-key cryptography using graphs to explore fundamental concepts and methods in informatics and mathematics and their interdisciplinarity. In broadening the understanding of informatics, these research initiatives also aim to foster motivation and prime for more professional learning of informatics.
Resumo:
The state of the object-oriented programming course in Lappeenranta University of Technology had reached the point, where it required changes to provide better learning opportunities and thus the learning outcomes. Based on the student feedback the course was partially dated and ineffective. The components of the course were analysed and the ineffective elements were removed and new methods were introduced to improve the course. The major changes included the change from traditional teaching methods to reverse classroom method and the use of Java as the programming language. The changes were measured by the student feedback, lecturer’s observations and comparison to previous years. The feedback suggested that the changes were successful; the course received higher overall grade than before.
Resumo:
The purpose of this document is to serve as the printed material for the seminar "An Introductory Course on Constraint Logic Programming". The intended audience of this seminar are industrial programmers with a degree in Computer Science but little previous experience with constraint programming. The seminar itself has been field tested, prior to the writing of this document, with a group of the application programmers of Esprit project P23182, "VOCAL", aimed at developing an application in scheduling of field maintenance tasks in the context of an electric utility company. The contents of this paper follow essentially the flow of the seminar slides. However, there are some differences. These differences stem from our perception from the experience of teaching the seminar, that the technical aspects are the ones which need more attention and clearer explanations in the written version. Thus, this document includes more examples than those in the slides, more exercises (and the solutions to them), as well as four additional programming projects, with which we hope the reader will obtain a clearer view of the process of development and tuning of programs using CLP. On the other hand, several parts of the seminar have been taken out: those related with the account of fields and applications in which C(L)P is useful, and the enumerations of C(L)P tools available. We feel that the slides are clear enough, and that for more information on available tools, the interested reader will find more up-to-date information by browsing the Web or asking the vendors directly. More details in this direction will actually boil down to summarizing a user manual, which is not the aim of this document.
Resumo:
Programming and mathematics are core areas of computer science (CS) and consequently also important parts of CS education. Introductory instruction in these two topics is, however, not without problems. Studies show that CS students find programming difficult to learn and that teaching mathematical topics to CS novices is challenging. One reason for the latter is the disconnection between mathematics and programming found in many CS curricula, which results in students not seeing the relevance of the subject for their studies. In addition, reports indicate that students' mathematical capability and maturity levels are dropping. The challenges faced when teaching mathematics and programming at CS departments can also be traced back to gaps in students' prior education. In Finland the high school curriculum does not include CS as a subject; instead, focus is on learning to use the computer and its applications as tools. Similarly, many of the mathematics courses emphasize application of formulas, while logic, formalisms and proofs, which are important in CS, are avoided. Consequently, high school graduates are not well prepared for studies in CS. Motivated by these challenges, the goal of the present work is to describe new approaches to teaching mathematics and programming aimed at addressing these issues: Structured derivations is a logic-based approach to teaching mathematics, where formalisms and justifications are made explicit. The aim is to help students become better at communicating their reasoning using mathematical language and logical notation at the same time as they become more confident with formalisms. The Python programming language was originally designed with education in mind, and has a simple syntax compared to many other popular languages. The aim of using it in instruction is to address algorithms and their implementation in a way that allows focus to be put on learning algorithmic thinking and programming instead of on learning a complex syntax. Invariant based programming is a diagrammatic approach to developing programs that are correct by construction. The approach is based on elementary propositional and predicate logic, and makes explicit the underlying mathematical foundations of programming. The aim is also to show how mathematics in general, and logic in particular, can be used to create better programs.
Resumo:
These are the resources for an introductory lecture in JavaScript programming. Exercises are provided to practice simple JavaScript programming, including a template for a DHTML implementation of Conway's Game of Life (with encrypted solution).
Resumo:
These are the resources for an introductory lecture in JavaScript programming, intended to support use of node.js and divorced from browser programming.
Resumo:
A virtual system that emulates an ARM-based processor machine has been created to replace a traditional hardware-based system for teaching assembly language. The proposed virtual system integrates, in a single environment, all the development tools necessary to deliver introductory or advanced courses on modern assembly language programming. The virtual system runs a Linux operating system in either a graphical or console mode on a Windows or Linux host machine. No software licenses or extra hardware are required to use the virtual system, thus students are free to carry their own ARM emulator with them on a USB memory stick. Institutions adopting this, or a similar virtual system, can also benefit by reducing capital investment in hardware-based development kits and enable distance learning courses.
Resumo:
This paper analyzes difficulties with the introduction of object-oriented concepts in introductory computing education and then proposes a two-language, two-paradigm curriculum model that alleviates such difficulties. Our two-language, two-paradigm curriculum model begins with teaching imperative programming using Python programming language, continues with teaching object-oriented computing using Java, and concludes with teaching object-oriented data structures with Java.