985 resultados para interferometric SAR


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, an advanced technique for the generation of deformation maps using synthetic aperture radar (SAR) data is presented. The algorithm estimates the linear and nonlinear components of the displacement, the error of the digital elevation model (DEM) used to cancel the topographic terms, and the atmospheric artifacts from a reduced set of low spatial resolution interferograms. The pixel candidates are selected from those presenting a good coherence level in the whole set of interferograms and the resulting nonuniform mesh tessellated with the Delauney triangulation to establish connections among them. The linear component of movement and DEM error are estimated adjusting a linear model to the data only on the connections. Later on, this information, once unwrapped to retrieve the absolute values, is used to calculate the nonlinear component of movement and atmospheric artifacts with alternate filtering techniques in both the temporal and spatial domains. The method presents high flexibility with respect to the required number of images and the baselines length. However, better results are obtained with large datasets of short baseline interferograms. The technique has been tested with European Remote Sensing SAR data from an area of Catalonia (Spain) and validated with on-field precise leveling measurements.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Spaceborne/airborne synthetic aperture radar (SAR) systems provide high resolution two-dimensional terrain imagery. The paper proposes a technique for combining multiple SAR images, acquired on flight paths slightly separated in the elevation direction, to generate high resolution three-dimensional imagery. The technique could be viewed as an extension to interferometric SAR (InSAR) in that it generates topographic imagery with an additional dimension of resolution. The 3-D multi-pass SAR imaging system is typically characterised by a relatively short ambiguity length in the elevation direction. To minimise the associated ambiguities we exploit the relative phase information within the set of images to track the terrain landscape. The SAR images are then coherently combined, via a nonuniform DFT, over a narrow (in elevation) volume centred on the 'dominant' terrain ground plane. The paper includes a detailed description of the technique, background theory, including achievable resolution, and the results of an experimental study.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Three-dimensional (3D) synthetic aperture radar (SAR) imaging via multiple-pass processing is an extension of interferometric SAR imaging. It exploits more than two flight passes to achieve a desired resolution in elevation. In this paper, a novel approach is developed to reconstruct a 3D space-borne SAR image with multiple-pass processing. It involves image registration, phase correction and elevational imaging. An image model matching is developed for multiple image registration, an eigenvector method is proposed for the phase correction and the elevational imaging is conducted using a Fourier transform or a super-resolution method for enhancement of elevational resolution. 3D SAR images are obtained by processing simulated data and real data from the first European Remote Sensing satellite (ERS-1) with the proposed approaches.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper assesses the potential of using spaceborne X-band synthetic aperture radar (SAR) data for monitoring water-level changes over wetlands. Our analysis is based on three sets of TerraSAR-X (TSX) observations acquired over South Florida's Everglades wetlands during an eight-month period in 2008. The first set was acquired in single HH polarization stripmap mode over our northern study area, consisting of managed wetlands and urban environments. The second set was acquired in dual-polarization stripmap mode over the western half of the same area, consisting mostly of managed wetlands. The third set was also acquired with dual-polarization stripmap mode over our southern study area, consisting of natural flow freshand salt-water wetlands in the southern Everglades. The first data set was used for a proof-of-concept study to verify that X-band data can generate coherent interferograms in wetland areas. Interferometric processing of this data set shows a high level of coherence (> 0.35) over both wetland and urban regions, maintaining interferometric phase in all three interferograms spanning 11 days. Surprisingly, phase is maintained over some of the wetlands even for interferograms spanning 33 days. The other two data sets were used to evaluate interferometric coherence of all four polarization modes and to determine dominant scattering mechanism in each wetland environment. Our results show high coherence values (> 0.4) in all polarization modes, with highest values in HH, then VV, and lowest in HV or VH. Interferograms calculated from multipolarization data show very similar fringe patterns regardless of the polarization type, suggesting that the phase information in all polarization data reflects water-level changes in wetlands and that volume scattering may be less important than commonly believed. We also used the two multipolarization data sets to conduct the Pauli decomposition, finding a strong dependence of scattering mechanism on vegetation t- - ype. The high interferometric coherence level of all polarization data suggests that a significant part of the X-band scattered signal interacts with lower sections of the vegetation (trunks and branches), because scattering from wind-affected canopies cannot support such a high coherence level. The high spatial resolution of TSX, combined with its 11-day repeat orbit, makes this X-band sensor surprisingly suitable for wetland interferometric SAR applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The problem of synthetic aperture radar interferometric phase noise reduction is addressed. A new technique based on discrete wavelet transforms is presented. This technique guarantees high resolution phase estimation without using phase image segmentation. Areas containing only noise are hardly processed. Tests with synthetic and real interferograms are reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este proyecto tiene como objetivo diseñar un nuevo receptor SAR biestático para el sistema SABRINA (SAR Bistatic fixed Receiver for INterferometric Applications) caracterizando el sistema que ya existía. El nuevo dispositivo deberá cumplir con las características y requisitos del escenario teniendo en cuenta la potencia recibida y el ruido de cuantificación de la tarjeta digitalizadora. Con este fin se introducen previamente conocimientos de teoría RADAR y SAR. Además, se deberá compactar al máximo el sistema para conseguir un receptor autocontenido que facilite su traslado. Para tal fin se ha incorporado a la caja del receptor un sintetizador programable que actúa de oscilador local de las cadenas de recepción y una fuente de alimentación que provee la tensión a todos los componentes activos del dispositivo. Por otra parte el proyecto ilustra las diferentes campañas de experimentos que se han realizado durante el periodo de trabajo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This letter discusses the detection and correction ofresidual motion errors that appear in airborne synthetic apertureradar (SAR) interferograms due to the lack of precision in the navigationsystem. As it is shown, the effect of this lack of precision istwofold: azimuth registration errors and phase azimuth undulations.Up to now, the correction of the former was carried out byestimating the registration error and interpolating, while the latterwas based on the estimation of the phase azimuth undulations tocompensate the phase of the computed interferogram. In this letter,a new correction method is proposed, which avoids the interpolationstep and corrects at the same time the azimuth phase undulations.Additionally, the spectral diversity technique, used to estimateregistration errors, is critically analyzed. Airborne L-bandrepeat-pass interferometric data of the German Aerospace Center(DLR) experimental airborne SAR is used to validate the method

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Auf einer drei Anbauperioden umfassenden Ground Truth Datenbasis wird der Informationsgehalt multitemporaler ERS-1/-2 Synthetic Aperture Radar (SAR) Daten zur Erfassung der Arteninventare und des Zustandes landwirtschaftlich genutzter Böden und Vegetation in Agrarregionen Bayerns evaluiert.Dazu wird ein für Radardaten angepaßtes, multitemporales, auf landwirtschaftlichen Schlägen beruhendes Klassifizierungsverfahren ausgearbeitet, das auf bildstatistischen Parametern der ERS-Zeitreihen beruht. Als überwachte Klassifizierungsverfahren wird vergleichend der Maximum-Likelihood-Klassifikator und ein Neuronales-Backpropagation-Netz eingesetzt. Die auf Radarbildkanälen beruhenden Gesamtgenauigkeiten variieren zwischen 75 und 85%. Darüber hinaus wird gezeigt, daß die interferometrische Kohärenz und die Kombination mit Bildkanälen optischer Sensoren (Landsat-TM, SPOT-PAN und IRS-1C-PAN) zur Verbesserung der Klassifizierung beitragen. Gleichermaßen können die Klassifizierungsergebnisse durch eine vorgeschaltete Grobsegmentierung des Untersuchungsgebietes in naturräumlich homogene Raumeinheiten verbessert werden. Über die Landnutzungsklassifizierung hinaus, werden weitere bio- und bodenphysikalische Parameter aus den SAR-Daten anhand von Regressionsmodellen abgeleitet. Im Mittelpunkt stehen die Paramter oberflächennahen Bodenfeuchte vegetationsfreier/-armer Flächen sowie die Biomasse landwirtschaftlicher Kulturen. Die Ergebnisse zeigen, daß mit ERS-1/-2 SAR-Daten eine Messung der Bodenfeuchte möglich ist, wenn Informationen zur Bodenrauhigkeit vorliegen. Hinsichtlich der biophysikalischen Parameter sind signifikante Zusammenhänge zwischen der Frisch- bzw. Trockenmasse des Vegetationsbestandes verschiedener Getreide und dem Radarsignal nachweisbar. Die Biomasse-Informationen können zur Korrektur von Wachstumsmodellen genutzt werden und dazu beitragen, die Genauigkeit von Ertragsschätzungen zu steigern.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Satellite SAR (Synthetic Aperture Radar) interferometry represents a valid technique for digital elevation models (DEM) generation, providing metric accuracy even without ancillary data of good quality. Depending on the situations the interferometric phase could be interpreted both as topography and as a displacement eventually occurred between the two acquisitions. Once that these two components have been separated it is possible to produce a DEM from the first one or a displacement map from the second one. InSAR DEM (Digital Elevation Model) generation in the cryosphere is not a straightforward operation because almost every interferometric pair contains also a displacement component, which, even if small, when interpreted as topography during the phase to height conversion step could introduce huge errors in the final product. Considering a glacier, assuming the linearity of its velocity flux, it is therefore necessary to differentiate at least two pairs in order to isolate the topographic residue only. In case of an ice shelf the displacement component in the interferometric phase is determined not only by the flux of the glacier but also by the different heights of the two tides. As a matter of fact even if the two scenes of the interferometric pair are acquired at the same time of the day only the main terms of the tide disappear in the interferogram, while the other ones, smaller, do not elide themselves completely and so correspond to displacement fringes. Allowing for the availability of tidal gauges (or as an alternative of an accurate tidal model) it is possible to calculate a tidal correction to be applied to the differential interferogram. It is important to be aware that the tidal correction is applicable only knowing the position of the grounding line, which is often a controversial matter. In this thesis it is described the methodology applied for the generation of the DEM of the Drygalski ice tongue in Northern Victoria Land, Antarctica. The displacement has been determined both in an interferometric way and considering the coregistration offsets of the two scenes. A particular attention has been devoted to investigate the importance of the role of some parameters, such as timing annotations and orbits reliability. Results have been validated in a GIS environment by comparison with GPS displacement vectors (displacement map and InSAR DEM) and ICEsat GLAS points (InSAR DEM).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 5,280 km2 Sian Ka’an Biosphere Reserve includes pristine wetlands fed by ground water from the karst aquifer of the Yucatan Peninsula, Mexico. The inflow through underground karst structures is hard to observe making it difficult to understand, quantify, and predict the wetland dynamics. Remotely sensed Synthetic Aperture Radar (SAR) amplitude and phase observations offer new opportunities to obtain information on hydrologic dynamics useful for wetland management. Backscatter amplitude of SAR data can be used to map flooding extent. Interferometric processing of the backscattered SAR phase data (InSAR) produces temporal phase-changes that can be related to relative water level changes in vegetated wetlands. We used 56 RADARSAT-1 SAR acquisitions to calculate 38 interferograms and 13 flooding maps with 24 day and 48 day time intervals covering July 2006 to March 2008. Flooding extent varied between 1,067 km2 and 2,588 km2 during the study period, and main water input was seen to take place in sloughs during October–December. We propose that main water input areas are associated with water-filled faults that transport ground water from the catchment to the wetlands. InSAR and Landsat data revealed local-scale water divides and surface water flow directions within the wetlands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bose-Einstein correlations of charged kaons are used to probe Au+Au collisions at s(NN)=200 GeV and are compared to charged pion probes, which have a larger hadronic scattering cross section. Three-dimensional Gaussian source radii are extracted, along with a one-dimensional kaon emission source function. The centrality dependences of the three Gaussian radii are well described by a single linear function of N(part)(1/3) with a zero intercept. Imaging analysis shows a deviation from a Gaussian tail at r greater than or similar to 10 fm, although the bulk emission at lower radius is well described by a Gaussian. The presence of a non-Gaussian tail in the kaon source reaffirms that the particle emission region in a heavy-ion collision is extended, and that similar measurements with pions are not solely due to the decay of long-lived resonances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, thermal and optical properties of the commercial Q-98 neodymium-doped phosphate glass have been measured at low temperature, from 50 to 300 K. The time-resolved thermal lens spectrometry together with the optical interferometry and the thermal relaxation calorimetry methods were used to investigate the glass athermal characteristics described by the temperature coefficient of the optical path length change, ds/dT. The thermal diffusivity was also determined, and the temperature coefficients of electronic polarizability, linear thermal expansion, and refractive index were calculated and used to explain ds/dT behavior. ds/dT measured via thermal lens method was found to be zero at 225 K. The results provided a complete characterization of the thermo-optical properties of the Q-98 glass, which may be useful for those using this material for diode-pumped solid-state lasers. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3234396]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the time resolved thermal lens method is combined with interferometric technique, the thermal relaxation calorimetry, photoluminescence and lifetime measurements to determine the thermo physical properties of Nd(2)O(3) doped sodium zincborate glass as a function of temperature up to the glass transition region. Thermal diffusivity, thermal conductivity, fluorescence quantum efficiency, linear thermal expansion coefficient and thermal coefficient of electronic polarizability were determined. In conclusion, the results showed the ability of thermal lens and interferometric methods to perform measurements very close to the phase transition region. These techniques provide absolute values for the measured physical quantities and are advantageous when low scan rates are required. (c) 2008 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chagas disease (American trypanosomiasis) is one of the most important parasitic diseases with serious social and economic impacts mainly on Latin America. This work reports the synthesis, in vitro trypanocidal evaluation, cytotoxicity assays, and molecular modeling and SAR/QSAR studies of a new series of N-phenylpyrazole benzylidene-carbohydrazides. The results pointed 6k (X = H, Y = p-NO(2), pIC(50) = 4.55 M) and 6l (X = F, Y = p-CN, pIC(50) = 4.27 M) as the most potent derivatives compared to crystal violet (pIC(50) = 3.77 M). The halogen-benzylidene-carbohydrazide presented the lowest potency whereas 6l showed the most promising pro. le with low toxicity (0% of cell death). The best equation from the 4D-QSAR analysis (Model 1) was able to explain 85% of the activity variability. The QSAR graphical representation revealed that bulky X-substituents decreased the potency whereas hydrophobic and hydrogen bond acceptor Y-substituents increased it. (C) 2008 Elsevier Ltd. All rights reserved.