716 resultados para intelligent computing


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The relation between the information/knowledge expression and the physical expression can be involved as one of items for an ambient intelligent computing [2],[3]. Moreover, because there are so many contexts around user/spaces during a user movement, all appplcation which are using AmI for users are based on the relation between user devices and environments. In these situations, it is possible that the AmI may output the wrong result from unreliable contexts by attackers. Recently, establishing a server have been utilizes, so finding secure contexts and make contexts of higher security level for save communication have been given importance. Attackers try to put their devices on the expected path of all users in order to obtain users informationillegally or they may try to broadcast their SPAMS to users. This paper is an extensionof [11] which studies the Security Grade Assignment Model (SGAM) to set Cyber-Society Organization (CSO).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper describes the architecture of a computer system conceived as an intelligent assistant for public transport management. The goal of the system is to help operators of a control center in making strategic decisions about how to solve problems of a fleet of buses in an urban network. The system uses artificial intelligence techniques to simulate the decision processes. In particular, a complex knowledge model has been designed by using advanced knowledge engineering methods that integrates three main tasks: diagnosis, prediction and planning. Finally, the paper describes two particular applications developed following this architecture for the cities of Torino (Italy) and Vitoria (Spain).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tutkimuksessa selvitettiin, kuinka hyvä tekoäly tietokonepeliin on mahdollista toteuttaa nykytiedolla ja -tekniikalla. Tekoäly rajattiin tarkoittamaan tekoälyn ohjaamia pelihahmoja. Lisäksi yksinkertaisia tekoälytoteutuksia ei huomioitu. Työ toteutettiin tutustumalla aiheeseen liittyvään kirjallisuuteen sekä kehittäjäyhteisön web-sivustojen tietoon. Hyvän tekoälyn kriteereiksi valikoituivat viihdyttävyys ja uskottavuus. Katsaus suosituimpiin toteuttamistekniikoihin ja tekoälyn mahdollisuuksiin osoitti, että teoriassa hyvinkin edistynyt tekoäly on toteutettavissa. Käytännössä tietokoneen rajalliset resurssit, kehittäjien rajalliset taidot ja pelinkehitysprojektien asettamat vaatimukset näyttävät kuitenkin rajoittavan tekoälyn toteuttamista kaupallisessa tuotteessa.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

On-line handwriting recognition has been a frontier area of research for the last few decades under the purview of pattern recognition. Word processing turns to be a vexing experience even if it is with the assistance of an alphanumeric keyboard in Indian languages. A natural solution for this problem is offered through online character recognition. There is abundant literature on the handwriting recognition of western, Chinese and Japanese scripts, but there are very few related to the recognition of Indic script such as Malayalam. This paper presents an efficient Online Handwritten character Recognition System for Malayalam Characters (OHR-M) using K-NN algorithm. It would help in recognizing Malayalam text entered using pen-like devices. A novel feature extraction method, a combination of time domain features and dynamic representation of writing direction along with its curvature is used for recognizing Malayalam characters. This writer independent system gives an excellent accuracy of 98.125% with recognition time of 15-30 milliseconds

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using the classical Parzen window (PW) estimate as the target function, the sparse kernel density estimator is constructed in a forward constrained regression manner. The leave-one-out (LOO) test score is used for kernel selection. The jackknife parameter estimator subject to positivity constraint check is used for the parameter estimation of a single parameter at each forward step. As such the proposed approach is simple to implement and the associated computational cost is very low. An illustrative example is employed to demonstrate that the proposed approach is effective in constructing sparse kernel density estimators with comparable accuracy to that of the classical Parzen window estimate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: The purpose of this paper is to address a classic problem – pattern formation identified by researchers in the area of swarm robotic systems – and is also motivated by the need for mathematical foundations in swarm systems. Design/methodology/approach: The work is separated out as inspirations, applications, definitions, challenges and classifications of pattern formation in swarm systems based on recent literature. Further, the work proposes a mathematical model for swarm pattern formation and transformation. Findings: A swarm pattern formation model based on mathematical foundations and macroscopic primitives is proposed. A formal definition for swarm pattern transformation and four special cases of transformation are introduced. Two general methods for transforming patterns are investigated and a comparison of the two methods is presented. The validity of the proposed models, and the feasibility of the methods investigated are confirmed on the Traer Physics and Processing environment. Originality/value: This paper helps in understanding the limitations of existing research in pattern formation and the lack of mathematical foundations for swarm systems. The mathematical model and transformation methods introduce two key concepts, namely macroscopic primitives and a mathematical model. The exercise of implementing the proposed models on physics simulator is novel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aircraft Maintenance, Repair and Overhaul (MRO) feedback commonly includes an engineer’s complex text-based inspection report. Capturing and normalizing the content of these textual descriptions is vital to cost and quality benchmarking, and provides information to facilitate continuous improvement of MRO process and analytics. As data analysis and mining tools requires highly normalized data, raw textual data is inadequate. This paper offers a textual-mining solution to efficiently analyse bulk textual feedback data. Despite replacement of the same parts and/or sub-parts, the actual service cost for the same repair is often distinctly different from similar previously jobs. Regular expression algorithms were incorporated with an aircraft MRO glossary dictionary in order to help provide additional information concerning the reason for cost variation. Professional terms and conventions were included within the dictionary to avoid ambiguity and improve the outcome of the result. Testing results show that most descriptive inspection reports can be appropriately interpreted, allowing extraction of highly normalized data. This additional normalized data strongly supports data analysis and data mining, whilst also increasing the accuracy of future quotation costing. This solution has been effectively used by a large aircraft MRO agency with positive results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A system identification algorithm is introduced for Hammerstein systems that are modelled using a non-uniform rational B-spline (NURB) neural network. The proposed algorithm consists of two successive stages. First the shaping parameters in NURB network are estimated using a particle swarm optimization (PSO) procedure. Then the remaining parameters are estimated by the method of the singular value decomposition (SVD). Numerical examples are utilized to demonstrate the efficacy of the proposed approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new PID tuning and controller approach is introduced for Hammerstein systems based on input/output data. A B-spline neural network is used to model the nonlinear static function in the Hammerstein system. The control signal is composed of a PID controller together with a correction term. In order to update the control signal, the multistep ahead predictions of the Hammerstein system based on the B-spline neural networks and the associated Jacobians matrix are calculated using the De Boor algorithms including both the functional and derivative recursions. A numerical example is utilized to demonstrate the efficacy of the proposed approaches.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Today, databases have become an integral part of information systems. In the past two decades, we have seen different database systems being developed independently and used in different applications domains. Today's interconnected networks and advanced applications, such as data warehousing, data mining & knowledge discovery and intelligent data access to information on the Web, have created a need for integrated access to such heterogeneous, autonomous, distributed database systems. Heterogeneous/multidatabase research has focused on this issue resulting in many different approaches. However, a single, generally accepted methodology in academia or industry has not emerged providing ubiquitous intelligent data access from heterogeneous, autonomous, distributed information sources. ^ This thesis describes a heterogeneous database system being developed at High-performance Database Research Center (HPDRC). A major impediment to ubiquitous deployment of multidatabase technology is the difficulty in resolving semantic heterogeneity. That is, identifying related information sources for integration and querying purposes. Our approach considers the semantics of the meta-data constructs in resolving this issue. The major contributions of the thesis work include: (i) providing a scalable, easy-to-implement architecture for developing a heterogeneous multidatabase system, utilizing Semantic Binary Object-oriented Data Model (Sem-ODM) and Semantic SQL query language to capture the semantics of the data sources being integrated and to provide an easy-to-use query facility; (ii) a methodology for semantic heterogeneity resolution by investigating into the extents of the meta-data constructs of component schemas. This methodology is shown to be correct, complete and unambiguous; (iii) a semi-automated technique for identifying semantic relations, which is the basis of semantic knowledge for integration and querying, using shared ontologies for context-mediation; (iv) resolutions for schematic conflicts and a language for defining global views from a set of component Sem-ODM schemas; (v) design of a knowledge base for storing and manipulating meta-data and knowledge acquired during the integration process. This knowledge base acts as the interface between integration and query processing modules; (vi) techniques for Semantic SQL query processing and optimization based on semantic knowledge in a heterogeneous database environment; and (vii) a framework for intelligent computing and communication on the Internet applying the concepts of our work. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Today, databases have become an integral part of information systems. In the past two decades, we have seen different database systems being developed independently and used in different applications domains. Today's interconnected networks and advanced applications, such as data warehousing, data mining & knowledge discovery and intelligent data access to information on the Web, have created a need for integrated access to such heterogeneous, autonomous, distributed database systems. Heterogeneous/multidatabase research has focused on this issue resulting in many different approaches. However, a single, generally accepted methodology in academia or industry has not emerged providing ubiquitous intelligent data access from heterogeneous, autonomous, distributed information sources. This thesis describes a heterogeneous database system being developed at Highperformance Database Research Center (HPDRC). A major impediment to ubiquitous deployment of multidatabase technology is the difficulty in resolving semantic heterogeneity. That is, identifying related information sources for integration and querying purposes. Our approach considers the semantics of the meta-data constructs in resolving this issue. The major contributions of the thesis work include: (i.) providing a scalable, easy-to-implement architecture for developing a heterogeneous multidatabase system, utilizing Semantic Binary Object-oriented Data Model (Sem-ODM) and Semantic SQL query language to capture the semantics of the data sources being integrated and to provide an easy-to-use query facility; (ii.) a methodology for semantic heterogeneity resolution by investigating into the extents of the meta-data constructs of component schemas. This methodology is shown to be correct, complete and unambiguous; (iii.) a semi-automated technique for identifying semantic relations, which is the basis of semantic knowledge for integration and querying, using shared ontologies for context-mediation; (iv.) resolutions for schematic conflicts and a language for defining global views from a set of component Sem-ODM schemas; (v.) design of a knowledge base for storing and manipulating meta-data and knowledge acquired during the integration process. This knowledge base acts as the interface between integration and query processing modules; (vi.) techniques for Semantic SQL query processing and optimization based on semantic knowledge in a heterogeneous database environment; and (vii.) a framework for intelligent computing and communication on the Internet applying the concepts of our work.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Subtle structural differencescan be observed in the islets of Langer-hans region of microscopic image of pancreas cell of the rats having normal glucose tolerance and the rats having pre-diabetic(glucose intolerant)situa-tions. This paper proposes a way to automatically segment the islets of Langer-hans region fromthe histological image of rat's pancreas cell and on the basis of some morphological feature extracted from the segmented region the images are classified as normal and pre-diabetic.The experiment is done on a set of 134 images of which 56 are of normal type and the rests 78 are of pre-diabetictype. The work has two stages: primarily,segmentationof theregion of interest (roi)i.e. islets of Langerhansfrom the pancreatic cell and secondly, the extrac-tion of the morphological featuresfrom the region of interest for classification. Wavelet analysis and connected component analysis method have been used for automatic segmentationof the images. A few classifiers like OneRule, Naïve Bayes, MLP, J48 Tree, SVM etc.are used for evaluation among which MLP performed the best.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recent years, vehicular cloud computing (VCC) has emerged as a new technology which is being used in wide range of applications in the area of multimedia-based healthcare applications. In VCC, vehicles act as the intelligent machines which can be used to collect and transfer the healthcare data to the local, or global sites for storage, and computation purposes, as vehicles are having comparatively limited storage and computation power for handling the multimedia files. However, due to the dynamic changes in topology, and lack of centralized monitoring points, this information can be altered, or misused. These security breaches can result in disastrous consequences such as-loss of life or financial frauds. Therefore, to address these issues, a learning automata-assisted distributive intrusion detection system is designed based on clustering. Although there exist a number of applications where the proposed scheme can be applied but, we have taken multimedia-based healthcare application for illustration of the proposed scheme. In the proposed scheme, learning automata (LA) are assumed to be stationed on the vehicles which take clustering decisions intelligently and select one of the members of the group as a cluster-head. The cluster-heads then assist in efficient storage and dissemination of information through a cloud-based infrastructure. To secure the proposed scheme from malicious activities, standard cryptographic technique is used in which the auotmaton learns from the environment and takes adaptive decisions for identification of any malicious activity in the network. A reward and penalty is given by the stochastic environment where an automaton performs its actions so that it updates its action probability vector after getting the reinforcement signal from the environment. The proposed scheme was evaluated using extensive simulations on ns-2 with SUMO. The results obtained indicate that the proposed scheme yields an improvement of 10 % in detection rate of malicious nodes when compared with the existing schemes.