918 resultados para inhalable particles
Resumo:
Introdução: Os efeitos adversos das partículas em suspensão na saúde humana expressam-se sob efeitos agudos e crónicos, não existindo nenhum limiar abaixo do qual se considere que a exposição a partículas não origine efeitos na saúde da população. À semelhança de outras capitais europeias, a cidade de Lisboa apresenta elevados níveis de partículas, principalmente nas áreas de maior tráfego. Objectivo: Neste estudo procurou-se analisar os efeitos na saúde humana decorrentes da exposição ambiental a partículas em suspensão na atmosfera (PM10 e PM2.5). Metodologia: O estudo centrou-se nos efeitos das partículas inaláveis na saúde respiratória da população infanto-juvenil residente em Lisboa. Para o efeito, foram caracterizados os níveis de partículas (PM10 e PM2.5) em Lisboa e procedeu-se a uma avaliação da morbilidade respiratória, utilizando métodos indirectos relacionados com a procura e utilização dos serviços de saúde em situação de urgência, tendo como base os atendimentos da Urgência Pediátrica de um Hospital de Lisboa. Resultados: Verificou-se que um terço das urgências pediátricas hospitalares é de natureza respiratória, destacando-se quatro principais patologias: infecção aguda das vias aéreas superiores, infecção aguda das vias aéreas inferiores, asma e pneumonia. Os modelos estatísticos explicativos foram desenvolvidos com vista a aferir as variáveis ambientais mais relevantes para avaliar os impactes da poluição atmosférica por PM na saúde respiratória infantil, identificando-se um desfasamento temporal, de poucos dias, entre as ocorrências de elevadas concentrações de partículas e os efeitos respiratórios. Conclusão: Nestes modelos a temperatura mínima surge como importante variável explicativa, assim como as concentrações de partículas medidas em estações de fundo (mais representativas dos níveis de concentrações de PM de zonas residenciais) em detrimento das estações de tráfego. Foi evidente uma relação entre a zona de residência das crianças com problemas respiratórios atendidas na urgência e as áreas da cidade com maiores níveis de partículas.
Resumo:
Diplomityön tavoitteena oli selvittää, kuinka sähkösuodattimella voidaan vaikuttaa sisäilman laatuun ja kuinka kilpailukykyinen vaihtoehto pienkiinteistöissä sähkösuodatin on perinteisiin kuitusuodattimiin verrattuna. Teoriaosassa tarkasteltiin, kuinka ilman hengitettävät hiukkaset muodostuvat ja miten ne vaikuttavat sisäilman laatuun sekä ihmisten terveyteen. Tarkasteltiin hiukkasten koon, lukumäärän, massan ja pinta-alan yhteyksiä niiden terveysvaikutuksiin. Ultrapienet hiukkaset ovat terveydelle haitallisimpia, koska hiukkasten lukumäärä ja pinta-ala lisäävät terveyshaittoja enemmän kuin hiukkasten massa. Tutkittiin pienkiinteistöjen ilmanvaihtoratkaisuja ja erilaisia tuloilmanpuhdistus-menetelmiä. Soveltavassa osassa tarkasteltiin sähkösuodattimen toimintaa ja sen mahdollisuuksia sisäilman parantajana verrattuna perinteisiin kuitusuodattimiin. Tehtiin sähkösuodattimen ja kuitusuodattimen välinen elinkaarikustannusvertailu keskisuurelle omakotitalolle. Kirjallisuuden ja tutkimushavaintojen perusteella sähkösuodattimen suurin etu muihin suodattimiin verrattuna on sen kyky poistaa kaiken kokoisia, myös ultrapieniä, hengitettäviä hiukkasia ja siten tehokkaasti vähentää hengitettävien hiukkasten lukumäärää ja pinta-alaa. Tällä voi olla vaikutusta yleisten terveyshaittojen ja ympäristöherkkyyden ennaltaehkäisemisessä. Ympäristöherkkyyteen sairastuneiden oireiluun sähkösuodatin voi tuottaa helpotusta kotioloissa ja siirrettävän ilmanpuhdistimen avulla myös työpaikoilla. Elinkaarikustannusvertailun perusteella selvisi, että sähkösuodatin on kalliimmasta hinnastaan huolimatta kokonaiskustannuksiltaan selvästi edullisempi vaihtoehto kuin kuitusuodattimet. Sähkösuodattimen haasteena on uuden teknologian lanseeraaminen pientalorakentamiseen. Pienrakennusten tuloilman puhdistusmenetelmien kehittämisellä olisi mahdollista parantaa suomalaisten elämänlaatua ja saavuttaa merkittäviä säästöjä terveydenhoitokuluissa.
Resumo:
Emission of fine particles by mobile sources has been a matter of great concern due to its potential risk both to human health and the environment. Although there is no evidence that one sole component may be responsible for the adverse health outcomes, it is postulated that the metal particle content is one of the most important factors, mainly in relation to oxidative stress. Data concerning the amount and type of metal particles emitted by automotive vehicles using Brazilian fuels are limited. The aim of this study was to identify inhalable particles (PM10) and their trace metal content in two light-duty vehicles where one was fueled with ethanol while the other was fueled with gasoline mixed with 22% of anhydrous ethanol (gasohol); these engines were tested on a chassis dynamometer. The elementary composition of the samples was evaluated by the particle-induced x-ray emission technique. The experiment showed that total emission factors ranged from 2.5 to 11.8 mg/km in the gasohol vehicle, and from 1.2 to 3 mg/km in the ethanol vehicle. The majority of particles emitted were in the fine fraction (PM2.5), in which Al, Si, Ca, and Fe corresponded to 80% of the total weight. PM10 emissions from the ethanol vehicle were about threefold lower than those of gasohol. The elevated amount of fine particulate matter is an aggravating factor, considering that these particles, and consequently associated metals, readily penetrate deeply into the respiratory tract, producing damage to lungs and other tissues.
Resumo:
Fine powders commonly have poor flowability and dispersibility due to interparticle adhesion that leads to formation of agglomerates. Knowing about adhesion in particle collectives is indispensable to gain a deeper fundamental understanding of particle behavior in powders. Especially in pharmaceutical industry a control of adhesion forces in powders is mandatory to improve the performance of inhalation products. Typically the size of inhalable particles is in the range of 1 - 5 µm. In this thesis, a new method was developed to measure adhesion forces of particles as an alternative to the established colloidal probe and centrifuge technique, which are both experimentally demanding, time consuming and of limited practical applicability. The new method is based on detachment of individual particles from a surface due to their inertia. The required acceleration in the order of 500 000 g is provided by a Hopkinson bar shock excitation system and measured via laser vibrometry. Particle detachment events are detected on-line by optical video microscopy. Subsequent automated data evaluation allows obtaining a statistical distribution of particle adhesion forces. To validate the new method, adhesion forces for ensembles of single polystyrene and silica microspheres on a polystyrene coated steel surface were measured under ambient conditions. It was possible to investigate more than 150 individual particles in one experiment and obtain adhesion values of particles in a diameter range of 3 - 13 µm. This enables a statistical evaluation while measuring effort and time are considerably lower compared to the established techniques. Measured adhesion forces of smaller particles agreed well with values from colloidal probe measurements and theoretical predictions. However, for the larger particles a stronger increase of adhesion with diameter was observed. This discrepancy might be induced by surface roughness and heterogeneity that influence small and large particles differently. By measuring adhesion forces of corrugated dextran particles with sizes down to 2 µm it was demonstrated that the Hopkinson bar method can be used to characterize more complex sample systems as well. Thus, the new device will be applicable to study a broad variety of different particle-surface combinations on a routine basis, including strongly cohesive powders like pharmaceutical drugs for inhalation.
Resumo:
The use of antimicrobial peptides and proteins as potential therapeutic agents in the management of multi-drug resistant infections is considered an attractive concept especially since such compounds should theoretically have low immunogenicity, high bioavailability with negligible toxicity. In this study we investigated the potential of developing a dry powder inhaler formulation of lactoferrin (a multifunctional iron binding protein). To achieve this, the protein was spray dried from a water only feedstock with suitably adjusted spray drying parameters. The particle size, degree of crystallinity, moisture content and yield of the spray dried powders along with the minimum bactericidal concentration (MBC) against Pseudomonas aeruginosa strain PAO1, were assessed. Dry powder inhaler formulations were prepared, and in vitro assessment studies using the multistage impinger were carried out to assess the aerosolisation performance of the formulations. Data obtained indicate that spray dried lactoferrin retains activity against biofilms and may be successfully employed in the treatment of chronic airway infections.
Resumo:
Epidemiological studies in urban areas have linked increasing respiratory and cardiovascular pathologies with atmospheric particulate matter (PM) from anthropic activities. However, the biological fate of metal-rich PM industrial emissions in urban areas of developed countries remains understudied. Lead toxicity and bioaccessibility assessments were therefore performed on emissions from a lead recycling plant, using complementary chemical acellular tests and toxicological assays, as a function of PM size (PM(10-2.5), PM(2.5-1) and PM(1)) and origin (furnace, refining and channeled emissions). Process PM displayed differences in metal content, granulometry, and percentage of inhalable fraction as a function of their origin. Lead gastric bioaccessibility was relatively low (maximum 25%) versus previous studies; although, because of high total lead concentrations, significant metal quantities were solubilized in simulated gastrointestinal fluids. Regardless of origin, the finest PM(1) particles induced the most significant pro-inflammatory response in human bronchial epithelial cells. Moreover, this biological response correlated with pro-oxidant potential assay results, suggesting some biological predictive value for acellular tests. Pulmonary effects from lead-rich PM could be driven by thiol complexation with either lead ions or directly on the particulate surface. Finally, health concern of PM was discussed on the basis of pro-inflammatory effects, accellular test results, and PM size distribution.
Resumo:
In this study, the concentration and morphological characteristics of inhalable particulate material (PM10) were evaluated and associated with climatic conditions. The mean annual concentration was 11.0 µg m−3, varying between 0,647 µg m−3 and 36.8 µg m−3. Wind speed has a higher influence on PM10 dispersion, but direction was associated with particle source. During the wet period, wind speed is the main dispersion factor, while speed and direction both are important during the dry period. Based on the morphological characteristics, it is concluded that biogenic particles prevail during the rainy season and terrigenous particles during the dry period, depending on the wind direction and intensity.
Resumo:
The practice of burning sugarcane obtained by non-mechanized harvesting exposes workers and the people of neighboring towns to high concentrations of particulate matter (PM) that is harmful to health, and may trigger a series of cardiorespiratory diseases. The aim of this study was to analyze the chemical composition of the micro-particles coming from sugarcane burning residues and to verify the effects of this micro-particulate matter on lung and tracheal tissues. Micro-particulate matter (PM10) was obtained by dissolving filter paper containing burnt residues in NaCl solution. This material was instilled into the Wistar rats' nostrils. Histological analyses (hematoxylin and eosin - HE) of cardiac, lung and tracheal tissues were performed. Inflammatory mediators were measured in lung tissues by using ELISA. The chemical composition of the particulate material revealed a large quantity of the phthalic acid ester, high concentrations of phenolic compounds, anthracene and polycyclic aromatic hydrocarbons (PAH). Histological analysis showed a reduction in subjacent conjunctive tissue in the trachea, lung inflammation with inflammatory infiltrate formation and reduction of alveolar spaces and a significant increase (p<0.05) in the release of IL-1α, IL-1β, IL-6, and INF-γ in the group treated with PM10 when compared to the control group. We concluded that the burning sugarcane residues release many particles, which have toxic chemical compounds. The micro-particulate matter can induce alterations in the respiratory system.
Resumo:
We have considered a Bose gas in an anisotropic potential. Applying the the Gross-Pitaevskii Equation (GPE) for a confined dilute atomic gas, we have used the methods of optimized perturbation theory and self-similar root approximants, to obtain an analytical formula for the critical number of particles as a function of the anisotropy parameter for the potential. The spectrum of the GPE is also discussed.
Resumo:
Size-resolved vertical aerosol number fluxes of particles in the diameter range 0.25-2.5 mu m were measured with the eddy covariance method from a 53 m high tower over the Amazon rain forest, 60 km NNW of Manaus, Brazil. This study focuses on data measured during the relatively clean wet season, but a shorter measurement period from the more polluted dry season is used as a comparison. Size-resolved net particle fluxes of the five lowest size bins, representing 0.25-0.45 mu m in diameter, were in general dominated by deposition in more or less all wind sectors in the wet season. This is an indication that the source of primary biogenic aerosol particles may be small in this particle size range. Transfer velocities within this particle size range were observed to increase linearly with increasing friction velocity and increasing particle diameter. In the diameter range 0.5-2.5 mu m, vertical particle fluxes were highly dependent on wind direction. In wind sectors where anthropogenic influence was low, net upward fluxes were observed. However, in wind sectors associated with higher anthropogenic influence, deposition fluxes dominated. The net upward fluxes were interpreted as a result of primary biogenic aerosol emission, but deposition of anthropogenic particles seems to have masked this emission in wind sectors with higher anthropogenic influence. The net emission fluxes were at maximum in the afternoon when the mixed layer is well developed, and were best correlated with horizontal wind speed according to the equation log(10)F = 0.48.U + 2.21 where F is the net emission number flux of 0.5-2.5 mu m particles [m(-2) s(-1)] and U is the horizontal wind speed [ms(-1)] at the top of the tower.
Resumo:
We consider finite-size particles colliding elastically, advected by a chaotic flow. The collisionless dynamics has a quasiperiodic attractor and particles are advected towards this attractor. We show in this work that the collisions have dramatic effects in the system's dynamics, giving rise to collective phenomena not found in the one-particle dynamics. In particular, the collisions induce a kind of instability, in which particles abruptly spread out from the vicinity of the attractor, reaching the neighborhood of a coexisting chaotic saddle, in an autoexcitable regime. This saddle, not present in the dynamics of a single particle, emerges due to the collective particle interaction. We argue that this phenomenon is general for advected, interacting particles in chaotic flows.
Resumo:
In this perspectives article, we reflect upon the existence of chirality in atmospheric aerosol particles. We then show that organic particles collected at a field site in the central Amazon Basin under pristine background conditions during the wet and dry seasons consist of chiral secondary organic material. We show how the chiral response from the aerosol particles can be imaged directly without the need for sample dissolution, solvent extraction, or sample preconcentration. By comparing the chiral-response images with optical images, we show that chiral responses always originate from particles on the filter, but not all aerosol particles produce chiral signals. The intensity of the chiral signal produced by the size resolved particles strongly indicates the presence of chiral secondary organic material in the particle. Finally, we discuss the implications of our findings on chiral atmospheric aerosol particles in terms of climate-related properties and source apportionment.
Resumo:
A magnetic study of 10 nm magnetite nanoparticles diluted in lyotropic liquid crystal and common liquids was carried out. In the liquid crystal the ZFC-FC curves showed a clear irreversible behavior, and it was possible to distinguish the nematic from the isotropic phase since the magnetization followed the dependence of the nematic order parameter with the temperature. This behavior could be mimicked by Monte Carlo simulation. (C) 2011 American Institute of Physics. [doi:10.1063/1.3549616]
Resumo:
We report on an experimental study of the structures presented by urethane/urea elastomeric films without and with ferromagnetic nanoparticles incorporated. The study is made by using the X-ray diffraction, nuclear magnetic resonance (NMR), optical, atomic and magnetic force (MFM) microscopy techniques, and mechanical assays. The structure of the elastomeric matrix is characterized by a distance of 0.46 nm between neighboring molecular segments, almost independent on the stretching applied. The shear casting performed in order to obtain the elastomeric films tends to orient the molecules parallel to the flow direction thus introducing anisotropy in the molecular network which is reflected on the values obtained for the orientational order parameter and its increase for the stretched films. In the case of nanoparticles-doped samples, the structure remains nearly unchanged although the local order parameter is clearly larger for the undoped films. NMR experiments evidence modifications in the molecular network local ordering. Micrometer size clusters were observed by MFM for even small concentration of magnetic particles.
Resumo:
We construct a nonrelativistic wave equation for spinning particles in the noncommutative space (in a sense, a theta modification of the Pauli equation). To this end, we consider the nonrelativistic limit of the theta-modified Dirac equation. To complete the consideration, we present a pseudoclassical model (a la Berezin-Marinov) for the corresponding nonrelativistic particle in the noncommutative space. To justify the latter model, we demonstrate that its quantization leads to the theta-modified Pauli equation. We extract theta-modified interaction between a nonrelativistic spin and a magnetic field from such a Pauli equation and construct a theta modification of the Heisenberg model for two coupled spins placed in an external magnetic field. In the framework of such a model, we calculate the probability transition between two orthogonal Einstein-Podolsky-Rosen states for a pair of spins in an oscillatory magnetic field and show that some of such transitions, which are forbidden in the commutative space, are possible due to the space noncommutativity. This allows us to estimate an upper bound on the noncommutativity parameter.