989 resultados para information visualization
Resumo:
The integration of nanostructured films containing biomolecules and silicon-based technologies is a promising direction for reaching miniaturized biosensors that exhibit high sensitivity and selectivity. A challenge, however, is to avoid cross talk among sensing units in an array with multiple sensors located on a small area. In this letter, we describe an array of 16 sensing units, of a light-addressable potentiometric sensor (LAPS), which was made with layer-by-Layer (LbL) films of a poly(amidomine) dendrimer (PAMAM) and single-walled carbon nanotubes (SWNTs), coated with a layer of the enzyme penicillinase. A visual inspection of the data from constant-current measurements with liquid samples containing distinct concentrations of penicillin, glucose, or a buffer indicated a possible cross talk between units that contained penicillinase and those that did not. With the use of multidimensional data projection techniques, normally employed in information Visualization methods, we managed to distinguish the results from the modified LAPS, even in cases where the units were adjacent to each other. Furthermore, the plots generated with the interactive document map (IDMAP) projection technique enabled the distinction of the different concentrations of penicillin, from 5 mmol L(-1) down to 0.5 mmol L(-1). Data visualization also confirmed the enhanced performance of the sensing units containing carbon nanotubes, consistent with the analysis of results for LAPS sensors. The use of visual analytics, as with projection methods, may be essential to handle a large amount of data generated in multiple sensor arrays to achieve high performance in miniaturized systems.
WVIS 2014 - 5th Workshop on Visual Analytics, Information Visualization and Scientific Visualization
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Digital data sets constitute rich sources of information, which can be extracted and evaluated applying computational tools, for example, those ones for Information Visualization. Web-based applications, such as social network environments, forums and virtual environments for Distance Learning, are good examples for such sources. The great amount of data has direct impact on processing and analysis tasks. This paper presents the computational tool Mapper, defined and implemented to use visual representations - maps, graphics and diagrams - for supporting the decision making process by analyzing data stored in Virtual Learning Environment TelEduc-Unesp. © 2012 IEEE.
Resumo:
The control of molecular architectures has been exploited in layer-by-layer (LbL) films deposited on Au interdigitated electrodes, thus forming an electronic tongue (e-tongue) system that reached an unprecedented high sensitivity (down to 10-12 M) in detecting catechol. Such high sensitivity was made possible upon using units containing the enzyme tyrosinase, which interacted specifically with catechol, and by processing impedance spectroscopy data with information visualization methods. These latter methods, including the parallel coordinates technique, were also useful for identifying the major contributors to the high distinguishing ability toward catechol. Among several film architectures tested, the most efficient had a tyrosinase layer deposited atop LbL films of alternating layers of dioctadecyldimethylammonium bromide (DODAB) and 1,2-dipalmitoyl-sn-3-glycero-fosfo-rac-(1-glycerol) (DPPG), viz., (DODAB/DPPG)5/DODAB/Tyr. The latter represents a more suitable medium for immobilizing tyrosinase when compared to conventional polyelectrolytes. Furthermore, the distinction was more effective at low frequencies where double-layer effects on the film/liquid sample dominate the electrical response. Because the optimization of film architectures based on information visualization is completely generic, the approach presented here may be extended to designing architectures for other types of applications in addition to sensing and biosensing. © 2013 American Chemical Society.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper reports a research to evaluate the potential and the effects of use of annotated Paraconsistent logic in automatic indexing. This logic attempts to deal with contradictions, concerned with studying and developing inconsistency-tolerant systems of logic. This logic, being flexible and containing logical states that go beyond the dichotomies yes and no, permits to advance the hypothesis that the results of indexing could be better than those obtained by traditional methods. Interactions between different disciplines, as information retrieval, automatic indexing, information visualization, and nonclassical logics were considered in this research. From the methodological point of view, an algorithm for treatment of uncertainty and imprecision, developed under the Paraconsistent logic, was used to modify the values of the weights assigned to indexing terms of the text collections. The tests were performed on an information visualization system named Projection Explorer (PEx), created at Institute of Mathematics and Computer Science (ICMC - USP Sao Carlos), with available source code. PEx uses traditional vector space model to represent documents of a collection. The results were evaluated by criteria built in the information visualization system itself, and demonstrated measurable gains in the quality of the displays, confirming the hypothesis that the use of the para-analyser under the conditions of the experiment has the ability to generate more effective clusters of similar documents. This is a point that draws attention, since the constitution of more significant clusters can be used to enhance information indexing and retrieval. It can be argued that the adoption of non-dichotomous (non-exclusive) parameters provides new possibilities to relate similar information.
Resumo:
The wide variety of molecular architectures used in sensors and biosensors and the large amount of data generated with some principles of detection have motivated the use of computational methods, such as information visualization techniques, not only to handle the data but also to optimize sensing performance. In this study, we combine projection techniques with micro-Raman scattering and atomic force microscopy (AFM) to address critical issues related to practical applications of electronic tongues (e-tongues) based on impedance spectroscopy. Experimentally, we used sensing units made with thin films of a perylene derivative (AzoPTCD acronym), coating Pt interdigitated electrodes, to detect CuCl(2) (Cu(2+)), methylene blue (MB), and saccharose in aqueous solutions, which were selected due to their distinct molecular sizes and ionic character in solution. The AzoPTCD films were deposited from monolayers to 120 nm via Langmuir-Blodgett (LB) and physical vapor deposition (PVD) techniques. Because the main aspects investigated were how the interdigitated electrodes are coated by thin films (architecture on e-tongue) and the film thickness, we decided to employ the same material for all sensing units. The capacitance data were projected into a 2D plot using the force scheme method, from which we could infer that at low analyte concentrations the electrical response of the units was determined by the film thickness. Concentrations at 10 mu M or higher could be distinguished with thinner films tens of nanometers at most-which could withstand the impedance measurements, and without causing significant changes in the Raman signal for the AzoPTCD film-forming molecules. The sensitivity to the analytes appears to be related to adsorption on the film surface, as inferred from Raman spectroscopy data using MB as analyte and from the multidimensional projections. The analysis of the results presented may serve as a new route to select materials and molecular architectures for novel sensors and biosensors, in addition to suggesting ways to unravel the mechanisms behind the high sensitivity obtained in various sensors.
Resumo:
In this paper we discuss the detection of glucose and triglycerides using information visualization methods to process impedance spectroscopy data. The sensing units contained either lipase or glucose oxidase immobilized in layer-by-layer (LbL) films deposited onto interdigitated electrodes. The optimization consisted in identifying which part of the electrical response and combination of sensing units yielded the best distinguishing ability. It is shown that complete separation can be obtained for a range of concentrations of glucose and triglyceride when the interactive document map (IDMAP) technique is used to project the data into a two-dimensional plot. Most importantly, the optimization procedure can be extended to other types of biosensors, thus increasing the versatility of analysis provided by tailored molecular architectures exploited with various detection principles. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A novel protein superfamily with over 600 members was discovered by iterative profile searches and analyzed with powerful bioinformatics and information visualization methods. Evidence exists that these proteins generate a radical species by reductive cleavage of S-adenosylmethionine (SAM) through an unusual Fe-S center. The superfamily (named here Radical SAM) provides evidence that radical-based catalysis is important in a number of previously well- studied but unresolved biochemical pathways and reflects an ancient conserved mechanistic approach to difficult chemistries. Radical SAM proteins catalyze diverse reactions, including unusual methylations, isomerization, sulfur insertion, ring formation, anaerobic oxidation and protein radical formation. They function in DNA precursor, vitamin, cofactor, antibiotic and herbicide biosynthesis and in biodegradation pathways. One eukaryotic member is interferon-inducible and is considered a candidate drug target for osteoporosis; another is observed to bind the neuronal Cdk5 activator protein. Five defining members not previously recognized as homologs are lysine 2,3-aminomutase, biotin synthase, lipoic acid synthase and the activating enzymes for pyruvate formate-lyase and anaerobic ribonucleotide reductase. Two functional predictions for unknown proteins are made based on integrating other data types such as motif, domain, operon and biochemical pathway into an organized view of similarity relationships.
Resumo:
Today, the data available to tackle many scientific challenges is vast in quantity and diverse in nature. The exploration of heterogeneous information spaces requires suitable mining algorithms as well as effective visual interfaces. Most existing systems concentrate either on mining algorithms or on visualization techniques. Though visual methods developed in information visualization have been helpful, for improved understanding of a complex large high-dimensional dataset, there is a need for an effective projection of such a dataset onto a lower-dimension (2D or 3D) manifold. This paper introduces a flexible visual data mining framework which combines advanced projection algorithms developed in the machine learning domain and visual techniques developed in the information visualization domain. The framework follows Shneiderman’s mantra to provide an effective user interface. The advantage of such an interface is that the user is directly involved in the data mining process. We integrate principled projection methods, such as Generative Topographic Mapping (GTM) and Hierarchical GTM (HGTM), with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates, billboarding, and user interaction facilities, to provide an integrated visual data mining framework. Results on a real life high-dimensional dataset from the chemoinformatics domain are also reported and discussed. Projection results of GTM are analytically compared with the projection results from other traditional projection methods, and it is also shown that the HGTM algorithm provides additional value for large datasets. The computational complexity of these algorithms is discussed to demonstrate their suitability for the visual data mining framework.
Resumo:
We introduce a flexible visual data mining framework which combines advanced projection algorithms from the machine learning domain and visual techniques developed in the information visualization domain. The advantage of such an interface is that the user is directly involved in the data mining process. We integrate principled projection algorithms, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates and billboarding, to provide a visual data mining framework. Results on a real-life chemoinformatics dataset using GTM are promising and have been analytically compared with the results from the traditional projection methods. It is also shown that the HGTM algorithm provides additional value for large datasets. The computational complexity of these algorithms is discussed to demonstrate their suitability for the visual data mining framework. Copyright 2006 ACM.