989 resultados para information geometry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the light of descriptive geometry and notions in set theory, this paper re-defines the basic elements in space such as curve and surface and so on, presents some fundamental notions with respect to the point cover based on the High-dimension space (HDS) point covering theory, finally takes points from mapping part of speech signals to HDS, so as to analyze distribution information of these speech points in HDS, and various geometric covering objects for speech points and their relationship. Besides, this paper also proposes a new algorithm for speaker independent continuous digit speech recognition based on the HDS point dynamic searching theory without end-points detection and segmentation. First from the different digit syllables in real continuous digit speech, we establish the covering area in feature space for continuous speech. During recognition, we make use of the point covering dynamic searching theory in HDS to do recognition, and then get the satisfying recognized results. At last, compared to HMM (Hidden Markov models)-based method, from the development trend of the comparing results, as sample amount increasing, the difference of recognition rate between two methods will decrease slowly, while sample amount approaching to be very large, two recognition rates all close to 100% little by little. As seen from the results, the recognition rate of HDS point covering method is higher than that of in HMM (Hidden Markov models) based method, because, the point covering describes the morphological distribution for speech in HDS, whereas HMM-based method is only a probability distribution, whose accuracy is certainly inferior to point covering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We proposed a novel methodology, which firstly, extracting features from species' complete genome data, using k-tuple, followed by studying the evolutionary relationship between SARS-CoV and other coronavirus species using the method, called "High-dimensional information geometry". We also used the mothod, namely "caculating of Minimum Spanning Tree", to construct the Phyligenetic tree of the coronavirus. From construction of the unrooted phylogenetic tree, we found out that the evolution distance between SARS-CoV and other coronavirus species is comparatively far. The tree accurately rebuilt the three groups of other coronavirus. We also validated the assertion from other literatures that SARS-CoV is similar to the coronavirus species in Group I.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Digitization is the main feature of modern Information Science. Conjoining the digits and the coordinates, the relation between Information Science and high-dimensional space is consanguineous, and the information issues are transformed to the geometry problems in some high-dimensional spaces. From this basic idea, we propose Computational Information Geometry (CIG) to make information analysis and processing. Two kinds of applications of CIG are given, which are blurred image restoration and pattern recognition. Experimental results are satisfying. And in this paper, how to combine with groups of simple operators in some 2D planes to implement the geometrical computations in high-dimensional space is also introduced. Lots of the algorithms have been realized using software.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural networks are statistical models and learning rules are estimators. In this paper a theory for measuring generalisation is developed by combining Bayesian decision theory with information geometry. The performance of an estimator is measured by the information divergence between the true distribution and the estimate, averaged over the Bayesian posterior. This unifies the majority of error measures currently in use. The optimal estimators also reveal some intricate interrelationships among information geometry, Banach spaces and sufficient statistics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Studies on learning problems from geometry perspective have attracted an ever increasing attention in machine learning, leaded by achievements on information geometry. This paper proposes a different geometrical learning from the perspective of high-dimensional descriptive geometry. Geometrical properties of high-dimensional structures underlying a set of samples are learned via successive projections from the higher dimension to the lower dimension until two-dimensional Euclidean plane, under guidance of the established properties and theorems in high-dimensional descriptive geometry. Specifically, we introduce a hyper sausage like geometry shape for learning samples and provides a geometrical learning algorithm for specifying the hyper sausage shapes, which is then applied to biomimetic pattern recognition. Experimental results are presented to show that the proposed approach outperforms three types of support vector machines with either a three degree polynomial kernel or a radial basis function kernel, especially in the cases of high-dimensional samples of a finite size. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

For many learning tasks the duration of the data collection can be greater than the time scale for changes of the underlying data distribution. The question we ask is how to include the information that data are aging. Ad hoc methods to achieve this include the use of validity windows that prevent the learning machine from making inferences based on old data. This introduces the problem of how to define the size of validity windows. In this brief, a new adaptive Bayesian inspired algorithm is presented for learning drifting concepts. It uses the analogy of validity windows in an adaptive Bayesian way to incorporate changes in the data distribution over time. We apply a theoretical approach based on information geometry to the classification problem and measure its performance in simulations. The uncertainty about the appropriate size of the memory windows is dealt with in a Bayesian manner by integrating over the distribution of the adaptive window size. Thus, the posterior distribution of the weights may develop algebraic tails. The learning algorithm results from tracking the mean and variance of the posterior distribution of the weights. It was found that the algebraic tails of this posterior distribution give the learning algorithm the ability to cope with an evolving environment by permitting the escape from local traps.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Neural networks can be regarded as statistical models, and can be analysed in a Bayesian framework. Generalisation is measured by the performance on independent test data drawn from the same distribution as the training data. Such performance can be quantified by the posterior average of the information divergence between the true and the model distributions. Averaging over the Bayesian posterior guarantees internal coherence; Using information divergence guarantees invariance with respect to representation. The theory generalises the least mean squares theory for linear Gaussian models to general problems of statistical estimation. The main results are: (1)~the ideal optimal estimate is always given by average over the posterior; (2)~the optimal estimate within a computational model is given by the projection of the ideal estimate to the model. This incidentally shows some currently popular methods dealing with hyperpriors are in general unnecessary and misleading. The extension of information divergence to positive normalisable measures reveals a remarkable relation between the dlt dual affine geometry of statistical manifolds and the geometry of the dual pair of Banach spaces Ld and Ldd. It therefore offers conceptual simplification to information geometry. The general conclusion on the issue of evaluating neural network learning rules and other statistical inference methods is that such evaluations are only meaningful under three assumptions: The prior P(p), describing the environment of all the problems; the divergence Dd, specifying the requirement of the task; and the model Q, specifying available computing resources.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper discusses the algorithm on the distance from a point and an infinite sub-space in high dimensional space With the development of Information Geometry([1]), the analysis tools of points distribution in high dimension space, as a measure of calculability, draw more attention of experts of pattern recognition. By the assistance of these tools, Geometrical properties of sets of samples in high-dimensional structures are studied, under guidance of the established properties and theorems in high-dimensional geometry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The problem of evaluating different learning rules and other statistical estimators is analysed. A new general theory of statistical inference is developed by combining Bayesian decision theory with information geometry. It is coherent and invariant. For each sample a unique ideal estimate exists and is given by an average over the posterior. An optimal estimate within a model is given by a projection of the ideal estimate. The ideal estimate is a sufficient statistic of the posterior, so practical learning rules are functions of the ideal estimator. If the sole purpose of learning is to extract information from the data, the learning rule must also approximate the ideal estimator. This framework is applicable to both Bayesian and non-Bayesian methods, with arbitrary statistical models, and to supervised, unsupervised and reinforcement learning schemes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neural networks have often been motivated by superficial analogy with biological nervous systems. Recently, however, it has become widely recognised that the effective application of neural networks requires instead a deeper understanding of the theoretical foundations of these models. Insight into neural networks comes from a number of fields including statistical pattern recognition, computational learning theory, statistics, information geometry and statistical mechanics. As an illustration of the importance of understanding the theoretical basis for neural network models, we consider their application to the solution of multi-valued inverse problems. We show how a naive application of the standard least-squares approach can lead to very poor results, and how an appreciation of the underlying statistical goals of the modelling process allows the development of a more general and more powerful formalism which can tackle the problem of multi-modality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spontaneous facial expressions differ from posed ones in appearance, timing and accompanying head movements. Still images cannot provide timing or head movement information directly. However, indirectly the distances between key points on a face extracted from a still image using active shape models can capture some movement and pose changes. This information is superposed on information about non-rigid facial movement that is also part of the expression. Does geometric information improve the discrimination between spontaneous and posed facial expressions arising from discrete emotions? We investigate the performance of a machine vision system for discrimination between posed and spontaneous versions of six basic emotions that uses SIFT appearance based features and FAP geometric features. Experimental results on the NVIE database demonstrate that fusion of geometric information leads only to marginal improvement over appearance features. Using fusion features, surprise is the easiest emotion (83.4% accuracy) to be distinguished, while disgust is the most difficult (76.1%). Our results find different important facial regions between discriminating posed versus spontaneous version of one emotion and classifying the same emotion versus other emotions. The distribution of the selected SIFT features shows that mouth is more important for sadness, while nose is more important for surprise, however, both the nose and mouth are important for disgust, fear, and happiness. Eyebrows, eyes, nose and mouth are important for anger.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses practical issues related to the use of the division model for lens distortion in multi-view geometry computation. A data normalisation strategy is presented, which has been absent from previous discussions on the topic. The convergence properties of the Rectangular Quadric Eigenvalue Problem solution for computing division model distortion are examined. It is shown that the existing method can require more than 1000 iterations when dealing with severe distortion. A method is presented for accelerating convergence to less than 10 iterations for any amount of distortion. The new method is shown to produce equivalent or better results than the existing method with up to two orders of magnitude reduction in iterations. Through detailed simulation it is found that the number of data points used to compute geometry and lens distortion has a strong influence on convergence speed and solution accuracy. It is recommended that more than the minimal number of data points be used when computing geometry using a robust estimator such as RANSAC. Adding two to four extra samples improves the convergence rate and accuracy sufficiently to compensate for the increased number of samples required by the RANSAC process.