974 resultados para industrial modelling
Resumo:
In this paper, dynamic modeling and simulation of the hydropurification reactor in a purified terephthalic acid production plant has been investigated by gray-box technique to evaluate the catalytic activity of palladium supported on carbon (0.5 wt.% Pd/C) catalyst. The reaction kinetics and catalyst deactivation trend have been modeled by employing artificial neural network (ANN). The network output has been incorporated with the reactor first principle model (FPM). The simulation results reveal that the gray-box model (FPM and ANN) is about 32 percent more accurate than FPM. The model demonstrates that the catalyst is deactivated after eleven months. Moreover, the catalyst lifetime decreases about two and half months in case of 7 percent increase of reactor feed flowrate. It is predicted that 10 percent enhancement of hydrogen flowrate promotes catalyst lifetime at the amount of one month. Additionally, the enhancement of 4-carboxybenzaldehyde concentration in the reactor feed improves CO and benzoic acid synthesis. CO is a poison to the catalyst, and benzoic acid might affect the product quality. The model can be applied into actual working plants to analyze the Pd/C catalyst efficient functioning and the catalytic reactor performance.
Resumo:
The need for a better quantification of the influence of Saharan dust transport processes on the air quality modelling in the Mediterranean basin led to the formulation of a dust emission module (DEM) integrated into the Air Quality Risk Assessment System for the Iberian Peninsula (SERCA). This paper is focused on the formulation of DEM based on the GOCART aerosol model, along with its integration and execution into the air quality model. It also addresses the testing of the module and its evaluation by contrasting results against satellite products such as MODIS and CALIPSO and ground-level observations of aerosol optical thickness (AOT) and concentration levels of PM10 for different periods in July 2007. DEM was found capable of reproducing the spatial (horizontal and vertical) and temporal profiles of Saharan dust outbreaks into the Mediterranean basin and the Atlantic coast of Africa. Moreover, it was observed that its combination with CMAQ increased the correlation degree between observed and modelled PM10 concentrations at the selected monitoring locations. DEM also enhanced CMAQ capabilities to reproduce observed AOT, although significant underestimations remain. The implementation of CMAQ + DEM succeeded in capturing Saharan dust transport into the Iberian Peninsula, with contributions up to 25 and 14 μg m−3 in 1 h and 24 h average PM10 respectively. The general improvement of total PM10 predictions in Spain are however moderate. The analysis of model performance for the main PM components points out that remaining PM10 underestimation is due to dust local sources missing in the inventories and misrepresentation of organic aerosol processes, which constitutes the main areas for future improvement of CMAQ capabilities to simulate particulate matter within SERCA.
Resumo:
Hybrid Stepper Motors are widely used in open-loop position applications. They are the choice of actuation for the collimators in the Large Hadron Collider, the largest particle accelerator at CERN. In this case the positioning requirements and the highly radioactive operating environment are unique. The latter forces both the use of long cables to connect the motors to the drives which act as transmission lines and also prevents the use of standard position sensors. However, reliable and precise operation of the collimators is critical for the machine, requiring the prevention of step loss in the motors and maintenance to be foreseen in case of mechanical degradation. In order to make the above possible, an approach is proposed for the application of an Extended Kalman Filter to a sensorless stepper motor drive, when the motor is separated from its drive by long cables. When the long cables and high frequency pulse width modulated control voltage signals are used together, the electrical signals difer greatly between the motor and drive-side of the cable. Since in the considered case only drive-side data is available, it is therefore necessary to estimate the motor-side signals. Modelling the entire cable and motor system in an Extended Kalman Filter is too computationally intensive for standard embedded real-time platforms. It is, in consequence, proposed to divide the problem into an Extended Kalman Filter, based only on the motor model, and separated motor-side signal estimators, the combination of which is less demanding computationally. The efectiveness of this approach is shown in simulation. Then its validity is experimentally demonstrated via implementation in a DSP based drive. A testbench to test its performance when driving an axis of a Large Hadron Collider collimator is presented along with the results achieved. It is shown that the proposed method is capable of achieving position and load torque estimates which allow step loss to be detected and mechanical degradation to be evaluated without the need for physical sensors. These estimation algorithms often require a precise model of the motor, but the standard electrical model used for hybrid stepper motors is limited when currents, which are high enough to produce saturation of the magnetic circuit, are present. New model extensions are proposed in order to have a more precise model of the motor independently of the current level, whilst maintaining a low computational cost. It is shown that a significant improvement in the model It is achieved with these extensions, and their computational performance is compared to study the cost of model improvement versus computation cost. The applicability of the proposed model extensions is demonstrated via their use in an Extended Kalman Filter running in real-time for closed-loop current control and mechanical state estimation. An additional problem arises from the use of stepper motors. The mechanics of the collimators can wear due to the abrupt motion and torque profiles that are applied by them when used in the standard way, i.e. stepping in open-loop. Closed-loop position control, more specifically Field Oriented Control, would allow smoother profiles, more respectful to the mechanics, to be applied but requires position feedback. As mentioned already, the use of sensors in radioactive environments is very limited for reliability reasons. Sensorless control is a known option but when the speed is very low or zero, as is the case most of the time for the motors used in the LHC collimator, the loss of observability prevents its use. In order to allow the use of position sensors without reducing the long term reliability of the whole system, the possibility to switch from closed to open loop is proposed and validated, allowing the use of closed-loop control when the position sensors function correctly and open-loop when there is a sensor failure. A different approach to deal with the switched drive working with long cables is also presented. Switched mode stepper motor drives tend to have poor performance or even fail completely when the motor is fed through a long cable due to the high oscillations in the drive-side current. The design of a stepper motor output fillter which solves this problem is thus proposed. A two stage filter, one devoted to dealing with the diferential mode and the other with the common mode, is designed and validated experimentally. With this ?lter the drive performance is greatly improved, achieving a positioning repeatability even better than with the drive working without a long cable, the radiated emissions are reduced and the overvoltages at the motor terminals are eliminated.
Resumo:
The computer simulation of manufacturing systems is commonly carried out using discrete event simulation (DES). Indeed, there appears to be a lack of applications of continuous simulation methods, particularly system dynamics (SD), despite evidence that this technique is suitable for industrial modelling. This paper investigates whether this is due to a decline in the general popularity of SD, or whether modelling of manufacturing systems represents a missed opportunity for SD. On this basis, the paper first gives a review of the concept of SD and fully describes the modelling technique. Following on, a survey of the published applications of SD in the 1990s is made by developing and using a structured classification approach. From this review, observations are made about the application of the SD method and opportunities for future research are suggested.
Resumo:
*** Purpose – Computer tomography (CT) for 3D reconstruction entails a huge number of coplanar fan-beam projections for each of a large number of 2D slice images, and excessive radiation intensities and dosages. For some applications its rate of throughput is also inadequate. A technique for overcoming these limitations is outlined. *** Design methodology/approach – A novel method to reconstruct 3D surface models of objects is presented, using, typically, ten, 2D projective images. These images are generated by relative motion between this set of objects and a set of ten fanbeam X-ray sources and sensors, with their viewing axes suitably distributed in 2D angular space. *** Findings – The method entails a radiation dosage several orders of magnitude lower than CT, and requires far less computational power. Experimental results are given to illustrate the capability of the technique *** Practical implications – The substantially lower cost of the method and, more particularly, its dramatically lower irradiation make it relevant to many applications precluded by current techniques *** Originality/value – The method can be used in many applications such as aircraft hold-luggage screening, 3D industrial modelling and measurement, and it should also have important applications to medical diagnosis and surgery.
Resumo:
The numerical modelling of electromagnetic waves has been the focus of many research areas in the past. Some specific applications of electromagnetic wave scattering are in the fields of Microwave Heating and Radar Communication Systems. The equations that govern the fundamental behaviour of electromagnetic wave propagation in waveguides and cavities are the Maxwell's equations. In the literature, a number of methods have been employed to solve these equations. Of these methods, the classical Finite-Difference Time-Domain scheme, which uses a staggered time and space discretisation, is the most well known and widely used. However, it is complicated to implement this method on an irregular computational domain using an unstructured mesh. In this work, a coupled method is introduced for the solution of Maxwell's equations. It is proposed that the free-space component of the solution is computed in the time domain, whilst the load is resolved using the frequency dependent electric field Helmholtz equation. This methodology results in a timefrequency domain hybrid scheme. For the Helmholtz equation, boundary conditions are generated from the time dependent free-space solutions. The boundary information is mapped into the frequency domain using the Discrete Fourier Transform. The solution for the electric field components is obtained by solving a sparse-complex system of linear equations. The hybrid method has been tested for both waveguide and cavity configurations. Numerical tests performed on waveguides and cavities for inhomogeneous lossy materials highlight the accuracy and computational efficiency of the newly proposed hybrid computational electromagnetic strategy.
Resumo:
A mathematical model has been developed for the gas carburising (diffusion) process using finite volume method. The computer simulation has been carried out for an industrial gas carburising process. The model's predictions are in good agreement with industrial experimental data and with data collected from the literature. A study of various mass transfer and diffusion coefficients has been carried out in order to suggest which correlations should be used for the gas carburising process. The model has been interfaced in a Windows environment using a graphical user interface. In this way, the model is extremely user friendly. The sensitivity analysis of various parameters such as initial carbon concentration in the specimen, carbon potential of the atmosphere, temperature of the process, etc. has been carried out using the model.
Application of scalar dissipation rate modelling to industrial burners in partially premixed regimes
Resumo:
The objective of this paper is to test various available turbulent burning velocity models on an experimental version of Siemens small scale combustor using the commercial CFD code. Failure of burning velocity model with different expressions for turbulent burning velocity is observed with an unphysical flame flashback into the swirler. Eddy Dissipation Model/Finite Rate Chemistry is found to over-predict mean temperature and species concentrations. Solving for reaction progress equation with its variance using scalar dissipation rate modelling produced reasonably good agreement with the available experimental data. Two different turbulence models Shear Stress Transport (SST) and Scale Adaptive Simulation (SAS) SST are tested and results from transient SST simulations are observed to be predicting well. SAS-SST is found to under-predict with temperature and species distribution.
Resumo:
In the analysis of industrial processes, there is an increasing emphasis on systems governed by interacting continuum phenomena. Mathematical models of such multi-physics processes can only be achieved for practical simulations through computational solution procedures—computational mechanics. Examples of such multi-physics systems in the context of metals processing are used to explore some of the key issues. Finite-volume methods on unstructured meshes are proposed as a means to achieve efficient rapid solutions to such systems. Issues associated with the software design, the exploitation of high performance computers, and the concept of the virtual computational-mechanics modelling laboratory are also addressed in this context.
Resumo:
This paper describes the development of neural model-based control strategies for the optimisation of an industrial aluminium substrate disk grinding process. The grindstone removal rate varies considerably over a stone life and is a highly nonlinear function of process variables. Using historical grindstone performance data, a NARX-based neural network model is developed. This model is then used to implement a direct inverse controller and an internal model controller based on the process settings and previous removal rates. Preliminary plant investigations show that thickness defects can be reduced by 50% or more, compared to other schemes employed. (c) 2004 Elsevier Ltd. All rights reserved.