915 resultados para in situ Mossbauer spectroscopy
Resumo:
In-situ impedance spectroscopy of layer-by-layer self-assembly of weak polyelectrolytes is presented. Interdigitated capacitors with active area of 1×1 mm2 and electrode spacing of 5 μm are fabricated and used for this purpose. Measurement results indicate that the impedance decreases with increase in number of polyelectrolyte layers. About 2.5% of relative change in magnitude of impedance at 104.7 KHz is seen for four bi-layers of Poly(Allylamine Hydrochloride) (PAH)/Poly(Acrylic acid) (PAA). An electrical equivalent for polyelectrolyte binding is obtained.
Resumo:
Nano-structured silicon anodes are attractive alternatives to graphitic carbons in rechargeable Li-ion batteries, owing to their extremely high capacities. Despite their advantages, numerous issues remain to be addressed, the most basic being to understand the complex kinetics and thermodynamics that control the reactions and structural rearrangements. Elucidating this necessitates real-time in situ metrologies, which are highly challenging, if the whole electrode structure is studied at an atomistic level for multiple cycles under realistic cycling conditions. Here we report that Si nanowires grown on a conducting carbon-fibre support provide a robust model battery system that can be studied by (7)Li in situ NMR spectroscopy. The method allows the (de)alloying reactions of the amorphous silicides to be followed in the 2nd cycle and beyond. In combination with density-functional theory calculations, the results provide insight into the amorphous and amorphous-to-crystalline lithium-silicide transformations, particularly those at low voltages, which are highly relevant to practical cycling strategies.
Resumo:
info:eu-repo/semantics/published
Resumo:
Previous work by the authors Walker et al. [2007b. Fluidised bed characterisation using Raman spectroscopy: applications to pharmaceutical processing. Chemical Engineering Science 62, 3832–3838] illustrated that Raman spectroscopy could be used to provide 3-D maps of the concentration and chemical structure of particles in motion in a fluidised bed, within a relatively short (120 s) time window. Moreover, we reported that the technique, as outlined, has the potential to give detailed in-situ information on how the structure and composition of granules/powders within the fluidised bed (dryer or granulator) vary with the position and evolve with time. In this study we extended the original work by shortening the time window of the Raman spectroscopic analysis to 10 s, which has allowed the in-situ real-time characterisation of a fluidised bed granulation process. Here we show an important new use of the technique which allows in-situ measurement of the composition of the material within the fluidised bed in three spatial dimensions and as a function of time. This is achieved by recording Raman spectra using a probe positioned within the fluidised bed on a long-travel x–y–z stage. In these experiments the absolute Raman intensity is used to provide a direct measure of the amount of any given material in the probed volume, i.e. a particle density. Particle density profiles have been calculated over the granulation time and show how the volume of the fluidised bed decreases with an increase mean granule size. The Raman spectroscopy analysis indicated that nucleation/coalescence in this co-melt fluidised hot melt granulation system occurred over a relatively short time frame (t<30 s). The Raman spectroscopic technique demonstrated accurate correlation with independent granulation experiments which provided particle size distribution analysis. The similarity of the data indicates that the Raman spectra accurately represent solids ratios within the bed, and thus the techniques quantitative capabilities for future use in the pharmaceutical industry.
Resumo:
We report the combined studies of density functional theory (DFT) calculations and electrochemical in situ FTIR spectroscopy on surface oxidants and mechanisms of CO oxidation at the Ru(0001) electrodes. It is shown that CO can co-adsorb with both O and OH species at lower potential region where a low coverage of the (2 x 2)-O/OH adlayer formed; the oxidation of CO adsorbates takes place at higher potentials where a high coverage of the (1 x 1)-O/OH adlayer formed. Surface O species are not the active oxidants under all coverages studied, due to the high reaction barriers between CO and O (>1 eV). However, surface OH species with higher coverage are identified as the active oxidants, and CO oxidation takes place via a two-steps' mechanism of CO + 3OH -> COOH + 2OH -> CO2 + H2O + OH, in which three nearby OH species are involved in the CO2 formation: CO reacts with OH, forming COOH; COOH then transfers the H to a nearby OH to form H2O and CO2, at the same time, another H in the H2O transfers to a nearby OH to form a weak adsorbed H2O and a new OH. The reaction barrier of these processes is reduced significantly to around 0.50 eV. These new results not only provide an insight into surface active oxidants on Ru, which is directly relevant to fuel cell catalysis, but also reveals the extra complexity of catalytic reactions taking place at solid/liquid electrochemical interface in comparison to the relatively simpler ones at solid/gas phase.
Resumo:
The electronic and vibrational properties of CO adsorbed on Pt electrodes at different potentials have been studied, by using methods of self-consistent-charge discrete variational Xa (SCC-DV-Xa) cluster calculations and in situ FTir spectroscopy. Two new models have been developed and verified to be successful: (1) using a "metallic state cluster" to imitate a metal (electrode) surface; and (2) charging the cluster and shifting its Fermi level (e{lunate}) to simulate, according to the relation of -d e{lunate}e dE, quantitatively the variation of the electrode potential (E). It is shown that the binding of PtCO is dominated by the electric charge transfer of dp ? 2p, while that of s ? Pt is less important in this binding. The electron occupancy of the 2p orbital of CO weakens the CO bond and decreases the v. Variation of E mainly influences the charge transfer process of dp ? 2p, but hardly influences that of s ? Pt. A linear potential-dependence of v has been shown and the calculated dv/dE = 35.0 cm V. All results of calculations coincide with the ir experimental data. © 1993.
Resumo:
The electrochemical redox processes of two high nuclearity osmium carbonyl clusters [(PhP)N[OsC(CO) ]·PPN (1) and Os(CO) (6) have been studied by electrochemical in situ FTIR. The five oxidation states of 1, i.e., [OsC(CO)], have been characterized. There are no significant structural changes for these species. Hence, the ability of this decanuclear cluster to act as an electron reservoir has been demonstrated. The structural rearrangement associated with the two-electron reduction of bicapped tetrahedral 6 to octahedral dianion [Os(CO)] and [Os(CO)] tetraanion has also been investigated. © 1996 American Chemical Society.
Resumo:
The magnetic structure of NiFe(2)O(4) nanoparticles has been investigated by means of Mossbauer spectra at T=4.2 K in applied fields up to 12 T. Four samples were studied, with mean particle diameters ranging from 4.3 to 8.9 nm. All spectra could be decomposed into three sextets, two corresponding to the ferrimagnetic sublattices of Fe ions in the spinel structure (core) and the third one to randomly frozen spins near the particle surface (shell). The shell thickness, calculated from the fraction of disordered spins, was found to be about one-third of the particle radius at H (app)=e0 and to decrease with the applied field toward a common limit of similar to 0.4 nm. The mean canting angle relative to the field was also found to decrease for increasing fields, at a rate inversely correlated to the particle size.
Resumo:
The corrosion resistance of Ti and Ti-6Al-4V was investigated through electrochemical impedance spectroscopy, EIS, potentiodynamic polarisation curves and UV-Vis spectrophotometry. The tests were done in Hank solution at 25 degrees C and 37 degrees C. The EIS measurements were done at the open circuit potential at specific immersion times. An increase of the resistance as a function of the immersion time was observed, for Ti (at 25 degrees C and 37 degrees C), and for Ti-6Al-4V (at 25 degrees C), which was interpreted as the formation and growth of a passive film on the metallic surfaces. (C) 2009 Elsevier Ltd. All rights reserved.