933 resultados para immediate implants
Resumo:
Aim To evaluate the influence of resorbable membranes on hard tissue alterations and osseointegration at implants placed into extraction sockets in a dog model. Material and methods In the mandibular premolar region, implants were installed immediately into the extraction sockets of six Labrador dogs. Collagen-resorbable membranes were placed at the test sites, while the control sites were left uncovered. Implants were intended to heal in a submerged mode. After 4 months of healing, the animals were sacrificed, and ground sections were obtained for histomorphometric evaluation. Results After 4 months of healing, a control implant was not integrated (n=5). Both at the test and at the control sites, bone resorption occurred. While the most coronal bone-to-implant contact was similar between the test and the control sites, the alveolar bone crest outline was maintained to a higher degree at the buccal aspect of the test sites (loss: 1.7 mm) compared with the control sites (loss: 2.2 mm). Conclusions The use of collagen-resorbable membranes at implants immediately placed into extraction sockets contributed to a partial (23%) preservation of the buccal outline of the alveolar process. To cite this article:Caneva M, Botticelli D, Salata LA, Souza SLS, Carvalho Cardoso L, Lang NP. Collagen membranes at immediate implants: a histomorphometric study in dogs.Clin. Oral Impl. Res. 21, 2010; 891-897.doi: 10.1111/j.1600-0501.2010.01946.x.
Resumo:
Aim To evaluate the influence of magnesium-enriched hydroxyapatite (MHA) (SintLife (R)) on bone contour preservation and osseointegration at implants placed immediately into extraction sockets. Material and methods In the mandibular pre-molar region, implants were installed immediately into extraction sockets of six Labrador dogs. MHA was placed at test sites, while the control sites did not receive augmentation materials. Implants were intended to heal in a submerged mode. After 4 months of healing, the animals were sacrificed, and ground sections were obtained for histomorphometric evaluation. Results After 4 months of healing, one control implant was not integrated leaving n=5 test and control implants for evaluation. Both at the test and the control sites, bone resorption occurred. While the most coronal bone-to-implant contact was similar between test and control sites, the alveolar bony crest outline was maintained to a higher degree at the buccal aspect of the test sites (loss: 0.7 mm) compared with the control sites (loss: 1.2 mm), even though this difference did not reach statistical significance. Conclusions The use of MHA to fill the defect around implants placed into the alveolus immediately after tooth extraction did not contribute significantly to the maintenance of the contours of the buccal alveolar bone crest. To cite this article:Caneva M, Botticelli D, Stellini E, Souza SLS, Salata LA, Lang NP. Magnesium-enriched hydroxyapatite at immediate implants: a histomorphometric study in dogs.Clin. Oral Impl. Res. 22, 2011; 512-517doi: 10.1111/j.1600-0501.2010.02040.x.
Resumo:
Aim To compare the remodeling of the alveolar process at implants installed immediately into extraction sockets by applying a flap or a ""flapless"" surgical approach in a dog model. Material and methods Implants were installed immediately into the distal alveoli of the second mandibular premolars of six Labrador dogs. In one side of the mandible, a full-thickness mucoperiosteal flap was elevated (control site), while contra-laterally, the mucosa was gently dislocated, but not elevated (test site) to disclose the alveolar crest. After 4 months of healing, the animals were sacrificed, ground sections were obtained and a histomorphometric analysis was performed. Results After 4 months of healing, all implants were integrated (n=6). Both at the test and at the control sites, bone resorption occurred with similar outcomes. The buccal bony crest resorption was 1.7 and 1.5 mm at the control and the test sites, respectively. Conclusions ""Flapless"" implant placement into extraction sockets did not result in the prevention of alveolar bone resorption and did not affect the dimensional changes of the alveolar process following tooth extraction when compared with the usual placement of implants raising mucoperiosteal flaps. To cite this article:Caneva M, Botticelli D, Salata LA, Souza SLS, Bressan E, Lang NP. Flap vs. ""flapless"" surgical approach at immediate implants: a histomorphometric study in dogs.Clin. Oral Impl. Res. 21, 2010; 1314-1319.doi: 10.1111/j.1600-0501.2009.01959.x.
Resumo:
AimTo evaluate the influence of resorbable membranes on hard tissue alterations and osseointegration at implants placed into extraction sockets in a dog model.Material and methodsIn the mandibular premolar region, implants were installed immediately into the extraction sockets of six Labrador dogs. Collagen-resorbable membranes were placed at the test sites, while the control sites were left uncovered. Implants were intended to heal in a submerged mode. After 4 months of healing, the animals were sacrificed, and ground sections were obtained for histomorphometric evaluation.ResultsAfter 4 months of healing, a control implant was not integrated (n=5). Both at the test and at the control sites, bone resorption occurred. While the most coronal bone-to-implant contact was similar between the test and the control sites, the alveolar bone crest outline was maintained to a higher degree at the buccal aspect of the test sites (loss: 1.7 mm) compared with the control sites (loss: 2.2 mm).ConclusionsThe use of collagen-resorbable membranes at implants immediately placed into extraction sockets contributed to a partial (23%) preservation of the buccal outline of the alveolar process.To cite this article:Caneva M, Botticelli D, Salata LA, Souza SLS, Carvalho Cardoso L, Lang NP. Collagen membranes at immediate implants: a histomorphometric study in dogs.Clin. Oral Impl. Res. 21, 2010; 891-897.doi: 10.1111/j.1600-0501.2010.01946.x.
Resumo:
AimTo evaluate the influence of magnesium-enriched hydroxyapatite (MHA) (SintLife (R)) on bone contour preservation and osseointegration at implants placed immediately into extraction sockets.Material and methodsIn the mandibular pre-molar region, implants were installed immediately into extraction sockets of six Labrador dogs. MHA was placed at test sites, while the control sites did not receive augmentation materials. Implants were intended to heal in a submerged mode. After 4 months of healing, the animals were sacrificed, and ground sections were obtained for histomorphometric evaluation.ResultsAfter 4 months of healing, one control implant was not integrated leaving n=5 test and control implants for evaluation. Both at the test and the control sites, bone resorption occurred. While the most coronal bone-to-implant contact was similar between test and control sites, the alveolar bony crest outline was maintained to a higher degree at the buccal aspect of the test sites (loss: 0.7 mm) compared with the control sites (loss: 1.2 mm), even though this difference did not reach statistical significance.ConclusionsThe use of MHA to fill the defect around implants placed into the alveolus immediately after tooth extraction did not contribute significantly to the maintenance of the contours of the buccal alveolar bone crest.To cite this article:Caneva M, Botticelli D, Stellini E, Souza SLS, Salata LA, Lang NP. Magnesium-enriched hydroxyapatite at immediate implants: a histomorphometric study in dogs.Clin. Oral Impl. Res. 22, 2011; 512-517doi: 10.1111/j.1600-0501.2010.02040.x.
Resumo:
AimTo compare the remodeling of the alveolar process at implants installed immediately into extraction sockets by applying a flap or a "flapless" surgical approach in a dog model.Material and methodsImplants were installed immediately into the distal alveoli of the second mandibular premolars of six Labrador dogs. In one side of the mandible, a full-thickness mucoperiosteal flap was elevated (control site), while contra-laterally, the mucosa was gently dislocated, but not elevated (test site) to disclose the alveolar crest. After 4 months of healing, the animals were sacrificed, ground sections were obtained and a histomorphometric analysis was performed.ResultsAfter 4 months of healing, all implants were integrated (n=6). Both at the test and at the control sites, bone resorption occurred with similar outcomes. The buccal bony crest resorption was 1.7 and 1.5 mm at the control and the test sites, respectively.Conclusions"Flapless" implant placement into extraction sockets did not result in the prevention of alveolar bone resorption and did not affect the dimensional changes of the alveolar process following tooth extraction when compared with the usual placement of implants raising mucoperiosteal flaps.To cite this article:Caneva M, Botticelli D, Salata LA, Souza SLS, Bressan E, Lang NP. Flap vs. "flapless" surgical approach at immediate implants: a histomorphometric study in dogs.Clin. Oral Impl. Res. 21, 2010; 1314-1319.doi: 10.1111/j.1600-0501.2009.01959.x.
Resumo:
The placement of implants in fresh extraction sockets followed for provisionalization allows soft tissues preservation and alveolar ridge, however for this some requisites are necessary. This article describe the factors involved in immediate implants and the prosthetic approachs for this type of therapy. Addtionaly two clinicals case were presented showing diferents approachs for in prosthetic stage for maintenance the aesthetic aperance of soft tissues of the immediate implants.
Resumo:
Hopeless retained primary teeth without permanent successors represent a restorative challenge for clinicians, along with esthetic and functional problems for patients. While various treatment approaches for congenitally missing teeth have been proposed, the replacement of a missing tooth with a dental implant offers specific advantages, such as preservation of the alveolar crest and elimination of the need to restore the adjacent teeth, over other options for tooth replacement. The aim of this article was to illustrate the surgical and prosthetic treatment with implants of a patient with primary teeth without permanent successors. INT J ORAL MAXILLOFAC IMPLANTS 2009;24:151-154
Resumo:
The aim of this study was to measure changes in buccal alveolar crestal bone levels after immediate placement and loading of dental implants with Morse taper prosthetic abutments after tooth extraction. This study followed the STROBE guidelines regarding prospective cohort studies. The sample comprised 12 patients with a mean age of 45 years, in whom a central or upper lateral incisor was indicated for extraction. Prior to extraction, computed tomography (CT) analysis was carried out to assess the presence of the buccal bone crest. CT scans were performed at 24 h and at 6 months after immediate implant placement and immediate loading. The distance from the most apical point of the implant platform to the buccal bone crest was assessed at the two time points. The buccal bone crest height was evaluated at three points in the mesio-distal direction: (1) the centre point of the alveolus, (2) 1 mm mesial to the centre point, and (3) 1 mm distal to the centre point. The values obtained were subjected to statistical analysis, comparing the distances from the bone crest to the implant platform for the two time points. After 6 months there was a statistically significant, non-uniform reduction in height at the level of the crest of the buccal bone in the cervical direction. It is concluded that the buccal bone crest of the immediate implants that replaced the maxillary incisors underwent apical resorption when subjected to immediate loading.
Resumo:
Aim: To evaluate the influence of deproteinized bovine bone mineral in conjunction with a collagen membrane, at implants installed into sockets in a lingual position immediately after tooth extraction, and presenting initial horizontal residual buccal defects <2 mm. Material and methods: The pulp tissue of the mesial roots of 4P4 was removed in six Labrador dogs, and the root canals were filled with gutta-percha and cement. Flaps were elevated, and the buccal and lingual alveolar bony plates were exposed. The premolars were hemi-sectioned, and the distal roots were removed. Implants were installed in a lingual position and with the margin flush with the buccal bony crest. After installation, defects resulted at about 1.7 mm in width at the buccal aspects, both at the test and control sites. Only in the left site (test), deproteinized bovine bone mineral (DBBM) particles were placed into the defect concomitantly with the placement of a collagen membrane. A non-submerged healing was allowed. Results: After 3 months of healing, one implant was found not integrated and was excluded from the analysis together with the contralateral control implant. All remaining implants were integrated into mature bone. The bony crest was located at the same level of the implant shoulder, both at the test and control sites. At the buccal aspect, the most coronal bone-to-implant contact was located at a similar distance from the implant margin at the test (1.7 ± 1.0 mm) and control (1.6 ± 0.8 mm) sites, respectively. Only small residual DBBM particles were found at the test sites. Conclusion: The placement of an implant in a lingual position into a socket immediately after tooth extraction may favor a low exposure of the buccal implant surface. The use of DBBM particles, concomitantly with a collagen membrane, did not additionally improve the outcome obtained at the control sites. © 2011 John Wiley & Sons A/S.
Resumo:
Aim: To evaluate the influence of the presence or absence of adjacent teeth on the level of the mesial and distal alveolar bony crest following healing at sites where implants were installed immediately into extraction sockets. Material and methods: Six Labrador dogs were used. In the right side of the mandible, full-thickness flaps were elevated, and the second, third, and fourth premolars and first molars were extracted. In the left side of the mandible, endodontic treatments of the mesial roots of the third and fourth premolars as well as of the first molars were performed. Full-thickness flaps were elevated, the teeth were hemi-sected, and the distal roots were removed. The second premolars were extracted as well. Subsequently, implants were bilaterally installed with the implant shoulder flush with the buccal bony crest. Implants were placed in the center of the alveoli, but at the fourth premolars, they were placed toward the lingual bony plate of the alveoli. After 3 months of healing, the animals were euthanized and histological sections of the sites prepared. Results: Larger bony crest resorption was observed at the test compared with the control sites, both at the bucco-lingual and mesio-distal aspects. The differences between test and controls for the coronal level of osseointegration were smaller than those for resorption. When data from all mesial and distal sites facing an adjacent tooth were collapsed and compared with those opposing an edentulous zone, lower bony crest resorption and deeper residual marginal defects were found at the sites with neighboring teeth. Conclusion: The extraction of teeth adjacent to a socket into which implants were installed immediately after tooth extraction caused more alveolar bone resorption both for the bucco-lingual and at the mesio-distal aspects compared with sites adjacent to a maintained tooth. © 2012 John Wiley & Sons A/S.
Resumo:
Aim: To evaluate the influence of deproteinized bovine bone mineral (DBBM), in conjunction with a collagen membrane, on bone resorption at implants installed in a lingual position immediately into extraction sockets with horizontal residual buccal defects >2.0 mm. Material & methods: The pulp tissue of the mesial roots of 1M1 was removed in six Labrador dogs, and the root canals were filled with gutta-percha and cement. Flaps were elevated. The molars were hemi-sectioned and the distal roots removed. Implants were installed in a lingual position and with the shoulder flush with the buccal bony crest. After installation, defects of about 2.5 and 2.7 mm in width resulted at the buccal aspects of the test and control sites, respectively. Only in the left site (test), deproteinized bovine bone mineral (DBBM) particles were placed into the defect concomitantly with the placement of a collagen membrane. On the control sites, no biomaterials were applied. A non-submerged healing was allowed. Results: After 3 months of healing, one control implant was not integrated and was excluded from the analysis, together with the contralateral test implant. All remaining implants were integrated into mature bone. The buccal alveolar bony crest was resorbed more at the test compared with the control sites, 2.2 ± 0.9 mm and 1.5 ± 1.3 mm, respectively. The vertical resorption of the lingual plate was 1.6 ± 1.5 mm and 1.5 ± 1.1 mm at the test and control sites, respectively. Only small residual DBBM particles were found at the test sites (1.4%). Conclusion: The use of DBBM particles to fill buccal defects of ≥2.5 mm at implants installed immediately into alveolar extraction sockets did not preserve the buccal bony wall. © 2012 John Wiley & Sons A/S.
Resumo:
AimTo evaluate peri-implant bone repair of implants placed into the roots of delayed reimplanted teeth, in a process of ankylosis and external replacement resorption.Material and methodsThe third and fourth mandibular premolars of four (4) beagle dogs were used as experimental sites. The study was divided into three stages: stage 1 - endodontic and extraction/reimplantation session, stage 2 - decrowning session and stage 3 - implant placement. Two groups were identified: (I) immediate implants, including implants installed in fresh extraction sockets of the distal roots, and (II) experimental implants, including implants installed into the retained ankylotic mesial roots. In each group, 16 implants were planned to be inserted, but only 9 immediate implants and 12 experimental implants were used for analyses. Implants were intended to heal in a submerged mode. After 4 months of healing, the animals were sacrificed and ground sections were obtained for histomorphometric evaluation.ResultsEleven of the twelve implants in the experimental group were found successful regarding clinical and radiographic aspects. For immediate implants, a lower BIC% was found at the coronal portion (BIC% 1=42.2%) compared with the three most coronal threads portion (BIC% 2=55.1). Also, experimental implants presented a lower BIC% at the coronal portion (BIC% 1=36.9%) compared with the three most coronal threads portion (BIC% 2=45.3).ConclusionComparison between groups showed a higher degree of BIC% and mineralization in immediate group compared with experimental group. The differences, however, did not yield statistical significance.
Resumo:
Objective: To compare with pristine sites bone resorption and soft tissue adaptation at implants placed immediately into extraction sockets (IPIES) in conjunction with deproteinized bovine bone mineral (DBBM) particles and a collagen membrane.Material and methods: The mesial root of the third premolar in the left side of the mandible was endodontically treated (Test). Flaps were elevated, the tooth hemi-sectioned, and the distal root removed to allow the immediate installation of an implant into the extraction socket in a lingual position. DBBM particles were placed into the defect and on the outer contour of the buccal bony ridge, concomitantly with the placement of a collagen membrane. A non-submerged healing was allowed. The premolar on the right side of the mandible was left in situ (control). Ground sections from the center of the implant as well as from the center of the distal root of the third premolar of the opposite side of the mandible were obtained. The histological image from the implant site was superimposed to that of the contralateral pristine distal alveolus, and dimensional variation evaluated for the hard tissue and the alveolar ridge.Results: After 3 months of healing, both histological and photographic evaluation revealed a reduction of hard and soft tissue dimensions.Conclusion: The contour augmentation performed with DBBM particles and a collagen membrane at the buccal aspects of implants placed IPIES was not able to maintain the tissue volume.