983 resultados para hydro-meteorological disasters
Resumo:
In this paper the properties of a hydro-meteorological forecasting system for forecasting river flows have been analysed using a probabilistic forecast convergence score (FCS). The focus on fixed event forecasts provides a forecaster's approach to system behaviour and adds an important perspective to the suite of forecast verification tools commonly used in this field. A low FCS indicates a more consistent forecast. It can be demonstrated that the FCS annual maximum decreases over the last 10 years. With lead time, the FCS of the ensemble forecast decreases whereas the control and high resolution forecast increase. The FCS is influenced by the lead time, threshold and catchment size and location. It indicates that one should use seasonality based decision rules to issue flood warnings.
Resumo:
Flood forecasting increasingly relies on numerical weather prediction forecasts to achieve longer lead times. One of the key difficulties that is emerging in constructing a decision framework for these flood forecasts is what to dowhen consecutive forecasts are so different that they lead to different conclusions regarding the issuing of warnings or triggering other action. In this opinion paper we explore some of the issues surrounding such forecast inconsistency (also known as "Jumpiness", "Turning points", "Continuity" or number of "Swings"). In thsi opinion paper we define forecast inconsistency; discuss the reasons why forecasts might be inconsistent; how we should analyse inconsistency; and what we should do about it; how we should communicate it and whether it is a totally undesirable property. The property of consistency is increasingly emerging as a hot topic in many forecasting environments.
Resumo:
The ALqueva hydro-meteorological EXperiment (ALEX) field campaign took place monthly during summer 2014 and consisted in in situ measurements and sampling of water and biological elements, collected from three fixed platforms placed in the lacustrine zone. This integrated overview, including meteorological, environmental and biological results contributes to improve the knowledge of the reservoir dynamics and therefore to propose adequate management measures to preserve the observed biological integrity.
Resumo:
The Nature-Based Solutions (NBS) concept and approach were developed to simultaneously face challenges such as risk mitigation and biodiversity conservation and restoration. NBSs have been endorsed by major International Organizations such as the EU, the FAO and World Bank that are pushing to enable a mainstreaming process. However, a shift from traditional engineering “grey” solutions to wider and standard adoption of NBS encounters technical, social, cultural, and normative barriers that have been identified with a qualitative content analysis of policy documents, reports and expert interviews. The case of the region Emilia-Romagna was studied by developing an analytical framework that brought together the social-ecological context, the governance system and the characteristics of specific NBSs.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Using a newly developed integrated indicator system with entropy weighting, we analyzed the panel data of 577 recorded disasters in 30 provinces of China from 1985–2011 to identify their links with the subsequent economic growth. Meteorological disasters promote economic growth through human capital instead of physical capital. Geological disasters did not trigger local economic growth from 1999–2011. Generally, natural disasters overall had no significant impact on economic growth from 1985–1998. Thus, human capital reinvestment should be the aim in managing recoveries, and it should be used to regenerate the local economy based on long-term sustainable development.
Resumo:
In November 2001, two separate Campbell loggers ("Meteologger" and "Hydrologger", both type CR23X) were installed at the Vernagtbach site in the Oetztal Alps, Austria (Latitude: 46.85; Longitude: 10.82; Elevation: 2640 m). On these loggers, 10-minutes centred averages for the meteorological data and 5-minutes centred averages for the hydrological data are recorded. The meteorological parameters comprise air temperature, humidity of the air, air pressure, four radiation components, wind direction and speed, precipitation and snow height. For air temperature, two records are published, recorded with a ventilated and an unventilated Pt-100 in a Stevenson screen; for precipitation, three time series are available: (I) the cumulative record of a weighing gauge for the whole year, (II) single events derived from (I), and (III) single events from a tipping bucket; (II) and (III) are only provided for the period 1, May to 31, October of each year. Wind records are also given with a time step of one hour, as only these records include several statistics of speed and direction. Hydrological parameters are recorded on the "Hydrologger", they comprise water stage, discharge, water temperature and electrolytic conductivity of the water. An identifying number gives the kind of instrument used in the water stage time series. Daily photographs of the glacier are provided and analysed with respect to precipitation type.
Resumo:
This special issue of Natural Hazards and Earth System Sciences (NHESS) contains eight papers presented as oral or poster contributions in the Natural Hazards NH-1.2 session on"Extreme events induced by weather and climate change: evaluation, forecasting and proactive planning", held at the European Geosciences Union (EGU) General Assembly in Vienna, Austria, on 13-18 April 2008. The aim of the session was to provide an international forum for presenting new results and for discussing innovative ideas and concepts on extreme hydro-meteorological events, including: (i) the assessment of the risk posed by the extreme events, (ii) the expected changes in the frequency and intensity of the events driven by a changing climate and by multiple human- induced causes, (iii) new modelling approaches and original forecasting methods to predict extreme events and their consequences, and (iv) strategies for hazard mitigation and risk reduction, and for a improved adaptation to extreme hydro-meteorological events ...
Resumo:
The thesis gives a general introduction about the topic include India, the spatial and temporal variation of the surface meteorological parameters are dealt in detail. The general pattern of the winds over the region in different seasons and the generation and movements of the thermally and dynamically originated local wind systems of Western Ghats region has been studied. The modification of the prevailing winds over region by the Palghat Gap and its effect on the mouth regions pf the gap is analysed in great depth. The thesis gives the information of climatic elements of the mountain region such as energy budgets, rainfall studies, evaporation and condensation and the variation in the heat fluxes over the region. The impact of orography is studied in a different approach. The type of hypothetical study gives more insight into the control of mountain on the distribution of meteorological parameter over the study region and helps to quantify the impact of the mountain in varying the weather climate of region. The detailed study of the hydro-meteorological aspects of the main river basins of the region also should be included to the climatic studies for the total understanding of the weather and climate over the region.
Resumo:
Numerous studies have proven an effect of a probable climate change on the hydrosphere’s different subsystems. In the 21st century global and regional redistribution of water has to be expected and it is very likely that extreme weather phenomenon will occur more frequently. From a global view the flood situation will exacerbate. In contrast to these discoveries the classical approach of flood frequency analysis provides terms like “mean flood recurrence interval”. But for this analysis to be valid there is a need for the precondition of stationary distribution parameters which implies that the flood frequencies are constant in time. Newer approaches take into account extreme value distributions with time-dependent parameters. But the latter implies a discard of the mentioned old terminology that has been used up-to-date in engineering hydrology. On the regional scale climate change affects the hydrosphere in various ways. So, the question appears to be whether in central Europe the classical approach of flood frequency analysis is not usable anymore and whether the traditional terminology should be renewed. In the present case study hydro-meteorological time series of the Fulda catchment area (6930 km²), upstream of the gauging station Bonaforth, are analyzed for the time period 1960 to 2100. At first a distributed catchment area model (SWAT2005) is build up, calibrated and finally validated. The Edertal reservoir is regulated as well by a feedback control of the catchments output in case of low water. Due to this intricacy a special modeling strategy has been necessary: The study area is divided into three SWAT basin models and an additional physically-based reservoir model is developed. To further improve the streamflow predictions of the SWAT model, a correction by an artificial neural network (ANN) has been tested successfully which opens a new way to improve hydrological models. With this extension the calibration and validation of the SWAT model for the Fulda catchment area is improved significantly. After calibration of the model for the past 20th century observed streamflow, the SWAT model is driven by high resolution climate data of the regional model REMO using the IPCC scenarios A1B, A2, and B1, to generate future runoff time series for the 21th century for the various sub-basins in the study area. In a second step flood time series HQ(a) are derived from the 21st century runoff time series (scenarios A1B, A2, and B1). Then these flood projections are extensively tested with regard to stationarity, homogeneity and statistical independence. All these tests indicate that the SWAT-predicted 21st-century trends in the flood regime are not significant. Within the projected time the members of the flood time series are proven to be stationary and independent events. Hence, the classical stationary approach of flood frequency analysis can still be used within the Fulda catchment area, notwithstanding the fact that some regional climate change has been predicted using the IPCC scenarios. It should be noted, however, that the present results are not transferable to other catchment areas. Finally a new method is presented that enables the calculation of extreme flood statistics, even if the flood time series is non-stationary and also if the latter exhibits short- and longterm persistence. This method, which is called Flood Series Maximum Analysis here, enables the calculation of maximum design floods for a given risk- or safety level and time period.
Resumo:
Providing probabilistic forecasts using Ensemble Prediction Systems has become increasingly popular in both the meteorological and hydrological communities. Compared to conventional deterministic forecasts, probabilistic forecasts may provide more reliable forecasts of a few hours to a number of days ahead, and hence are regarded as better tools for taking uncertainties into consideration and hedging against weather risks. It is essential to evaluate performance of raw ensemble forecasts and their potential values in forecasting extreme hydro-meteorological events. This study evaluates ECMWF’s medium-range ensemble forecasts of precipitation over the period 2008/01/01-2012/09/30 on a selected mid-latitude large scale river basin, the Huai river basin (ca. 270,000 km2) in central-east China. The evaluation unit is sub-basin in order to consider forecast performance in a hydrologically relevant way. The study finds that forecast performance varies with sub-basin properties, between flooding and non-flooding seasons, and with the forecast properties of aggregated time steps and lead times. Although the study does not evaluate any hydrological applications of the ensemble precipitation forecasts, its results have direct implications in hydrological forecasts should these ensemble precipitation forecasts be employed in hydrology.
Resumo:
A millimetre-wave scintillometer was paired with an infrared scintillometer, enabling estimation of large-area evapotranspiration across northern Swindon, a suburban area in the UK. Both sensible and latent heat fluxes can be obtained using this "two-wavelength" technique, as it is able to provide both temperature and humidity structure parameters, offering a major advantage over conventional single-wavelength scintillometry. The first paper of this two-part series presented the measurement theory and structure parameters. In this second paper, heat fluxes are obtained and analysed. These fluxes, estimated using two-wavelength scintillometry over an urban area, are the first of their kind. Source area modelling suggests the scintillometric fluxes are representative of 5–10 km2. For comparison, local-scale (0.05–0.5 km2) fluxes were measured by an eddy covariance station. Similar responses to seasonal changes are evident at the different scales but the energy partitioning varies between source areas. The response to moisture availability is explored using data from 2 consecutive years with contrasting rainfall patterns (2011–2012). This extensive data set offers insight into urban surface-atmosphere interactions and demonstrates the potential for two-wavelength scintillometry to deliver fluxes over mixed land cover, typically representative of an area 1–2 orders of magnitude greater than for eddy covariance measurements. Fluxes at this scale are extremely valuable for hydro-meteorological model evaluation and assessment of satellite data products
Resumo:
Probabilistic hydro-meteorological forecasts have over the last decades been used more frequently to communicate forecastuncertainty. This uncertainty is twofold, as it constitutes both an added value and a challenge for the forecaster and the user of the forecasts. Many authors have demonstrated the added (economic) value of probabilistic over deterministic forecasts across the water sector (e.g. flood protection, hydroelectric power management and navigation). However, the richness of the information is also a source of challenges for operational uses, due partially to the difficulty to transform the probability of occurrence of an event into a binary decision. This paper presents the results of a risk-based decision-making game on the topic of flood protection mitigation, called “How much are you prepared to pay for a forecast?”. The game was played at several workshops in 2015, which were attended by operational forecasters and academics working in the field of hydrometeorology. The aim of this game was to better understand the role of probabilistic forecasts in decision-making processes and their perceived value by decision-makers. Based on the participants’ willingness-to-pay for a forecast, the results of the game show that the value (or the usefulness) of a forecast depends on several factors, including the way users perceive the quality of their forecasts and link it to the perception of their own performances as decision-makers.
Resumo:
In the last years extreme hydrometeorological phenomena have increased in number and intensity affecting the inhabitants of various regions, an example of these effects are the central basins of the Gulf of Mexico (CBGM) that they have been affected by 55.2% with floods and especially the state of Veracruz (1999-2013), leaving economic, social and environmental losses. Mexico currently lacks sufficient hydrological studies for the measurement of volumes in rivers, since is convenient to create a hydrological model (HM) suited to the quality and quantity of the geographic and climatic information that is reliable and affordable. Therefore this research compares the semi-distributed hydrological model (SHM) and the global hydrological model (GHM), with respect to the volumes of runoff and achieve to predict flood areas, furthermore, were analyzed extreme hydrometeorological phenomena in the CBGM, by modeling the Hydrologic Modeling System (HEC-HMS) which is a SHM and the Modèle Hydrologique Simplifié à I'Extrême (MOHYSE) which is a GHM, to evaluate the results and compare which model is suitable for tropical conditions to propose public policies for integrated basins management and flood prevention. Thus it was determined the temporal and spatial framework of the analyzed basins according to hurricanes and floods. It were developed the SHM and GHM models, which were calibrated, validated and compared the results to identify the sensitivity to the real model. It was concluded that both models conform to tropical conditions of the CBGM, having MOHYSE further approximation to the real model. Worth mentioning that in Mexico there is not enough information, besides there are no records of MOHYSE use in Mexico, so it can be a useful tool for determining runoff volumes. Finally, with the SHM and the GHM were generated climate change scenarios to develop risk studies creating a risk map for urban planning, agro-hydrological and territorial organization.
Resumo:
Die vorliegende Arbeit sollte weitere Erkenntnisse zum Abflussverhalten forstlich genutzter Standorte im Einzugsgebiet der Nahe liefern. Zu diesem Zweck wurde das 12,73 km² umfassenden Einzugsgebietes des Oberen Gräfenbaches als Untersuchungsgebiet ausgewählt, das im fast ausschließlich waldbestandenen Soonwald lokalisiert ist. Das Einzugsgebiet wurde ab 1999 mit einem hydrometeorologischen Messnetz ausgestattet. Zusammen mit Geländebeobachtungen des Abflussgeschehens und einer Aufnahme der physiogeographischen Gebietseigenschaften wurde eine Analyse des Abflussverhaltens möglich. Die Analysen umfassten die grundlegende quantitative Auswertung der erhobenen Zeitreihen mit Hilfe statistisch-mathematischer Verfahren und die Nachbildung der hydrologischen Prozesse mit Hilfe des Modells MMS/PRMS. Die räumliche Diskretisierung des Gebietes erfolgte dabei durch Ausweisung von Hydrological Response Units (HRUs). Die Nachbildung des Ist-Zustandes wurde durch Rechnung mehrerer Landnutzungsszenarien ergänzt. Die Untersuchungen zeigten die enorme Variabilität der Gebietsabflüsse bei insgesamt hohen Jahresabflussvolumina auf. Zwischen den einzelnen Hangbereichen bestehen dabei grundlegende Unterschiede, die sowohl die Abflussbildungsprozesse als auch den Abflussgang betreffen. Im Rahmen der Landnutzungsszenarien wurde aufbauend deutlich, dass sich eine Veränderung der forstlichen Bestandeszusammensetzung nur nachrangig auf die Abflussentstehung auswirkt.