843 resultados para hot pressing
Resumo:
Dense ZrB2-SiC (25-30 vol%) composites have been produced by reactive hot pressing using stoichiometric Zr, B4C, C and Si powder mixtures with and without Ni addition at 40 MPa, 1600 degrees C for 60 min. Nickel, a common additive to promote densification, is shown not to be essential; the presence of an ultra-fine microstructure containing a transient plastic ZrC phase is suggested to play a key role at low temperatures, while a transient liquid phase may be responsible at temperatures above 1350 degrees C. Hot Pressing of non-stoichiometric mixture of Zr, B4C and Si at 40 MPa, 1600 degrees C for 30 min resulted in ZrB2-ZrCx-SiC (15 vol%) composites of similar to 98% RD.
Resumo:
Dense ZrB2-ZrC and ZrB2-ZrC x∼0.67 composites have been produced by reactive hot pressing (RHP) of stoichiometric and nonstoichiometric mixtures of Zr and B4C powders at 40 MPa and temperatures up to 1600 °C for 30 minutes. The role of Ni addition on reaction kinetics and densification of the composites has been studied. Composites of ∼97 pct relative density (RD) have been produced with the stoichiometric mixture at 1600 °C, while the composite with ∼99 pct RD has been obtained with excess Zr at 1200 °C, suggesting the formation of carbon deficient ZrC x that significantly aids densification by plastic flow and vacancy diffusion mechanism. Stoichiometric and nonstoichiometric composites have a hardness of ∼20 GPa. The grain sizes of ZrB2 and ZrC x∼0.67 are ∼0.6 and 0.4 μm, respectively, which are finer than those reported in the literature.
Resumo:
Synthesis and densification of monolithic zirconium carbide (ZrC) has been carried out by reactive hot pressing of zirconium (Zr) and graphite (C) powders in the molar ratios 1:1, 1.25:1, 1.5:1, and 2:1 at 40 MPa, 1200 degrees-1600 degrees C. Monolithic ZrC could be synthesized with a C/Zr ratio similar to 0.5-1.0 and the post heat-treated samples have the lattice parameter in the range 4.665 to 4.698 A. Densification improves with an increasing deviation from the stoichiometry. Fine-grained (similar to 1 mu m) and nearly fully dense material (99% RD) could be obtained at a temperature as low as 1200 degrees C with C/Zr similar to 0.67. Microstructural and XRD observations suggest that densification occurred at low temperatures with nonstoichiometric Zr-C powder mixtures.
Resumo:
Starting with non-stoichiometric Zr-B4C powder mixture ZrB2-ZrC matrix composites with SiC particulate addition have been made. It was found that variable amounts (5-25 vol%) of SiC could be incorporated and reactively hot pressed (RHPed) to relative densities of 97-99% at 1400-1500 degrees C. This technique has the potential to fabricate ZrB2-based matrices at low temperatures with a variety of reinforcements whose composition and volume fraction are not limited by stoichiometric considerations. The hardness of the composites is in the range of 17-22 GPa. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Stoichiometric and non-stoichiometric powder mixtures of Ti-B4C and Ti-C with 1 wt% Ni were reactively hot pressed at 40 MPa, 1200 degrees C for 30 min. In both systems, the combined presence of Ni and non-stoichiometry enabled complete densification. While in Ti-C, non-stoichiometry by itself plays a significant role in promoting densification, the formation of intermediate borides in Ti-B4C powder mixtures requires the additional presence of Ni which promotes full reaction through the formation of a transient liquid as established previously in Ti-BN powder mixtures.
Resumo:
The dominant densification mechanisms for hot pressing of ZrB2-20 vol.% SiC composite at different hot-pressing temperatures and pressures was identified. The dominant densification mechanisms were found to change over a very short temperature range. For hot pressing at 1700 degrees C, the dominant densification mechanism was found to be mechanically driven particle fragmentation and rearrangement only, whereas at 1850 degrees C a plastic flow mechanism started to become dominant after initial particle fragmentation and rearrangement. At 2000 degrees C, the dominant mechanism changed from plastic flow to grain boundary diffusion. (c) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A model of reactive hot pressing of zirconium carbide (ZrCx, 0.5 < x < 1) has been constructed that incorporates four processes that occur in parallel: creep of zirconium (Zr), reaction of Zr and carbon (C), increase in volume fraction of hard phase with progressive reaction that reduces the creep of Zr and, finally, de-densification associated with volume reduction during reaction. The reasonable agreement of the model with experimental results verifies that plastic deformation of Zr is the main factor that is responsible for the low-temperature reactive densification of ZrC and that ZrC may be treated as a rigid inclusion that contributes little to densification. It predicts that densification is impaired by increasing carbon stoichiometry due to the increasing amount of starting hard phase and the greater contraction upon reaction. Additionally, the model predicts that mixtures of Zr and ZrC should show equal or better densification than Zr and C mixtures.
Resumo:
The effect of applied pressure on reactive hot pressing (RHP) of zirconium (Zr):graphite (C) in molar ratios of 1:0.5, 1:0.67, 1:0.8, and 1:1 was studied at 1200 degrees C for 60 min. The relative density achievable increased with increasing pressure and ranged from 99% at 4 MPa for ZrC0.5 to 93% for stoichiometric ZrC at 100 MPa. The diminishing influence of pressure on the final density with increasing stoichiometry is attributed to two causes: the decreasing initial volume fraction of the plastically deforming Zr metal which leads to the earlier formation of a contiguous, stress shielding carbide skeleton and the larger molar volume shrinkage during reaction which leads to pore formation in the final stages. A numerical model of the creep densification of a dynamically evolving microstructure predicts densities that are consistent with observations and confirm that the availability of a soft metal is primarily responsible for the achievement of such elevated densification during RHP. The ability to densify nonstoichiometric compositions like ZrC0.5 at pressures as low as 4 MPa offers an alternate route to fabricating dense nonstoichiometric carbides.
Resumo:
The microstructure and mechanical properties of sintered stainless steel powder, of composition AISI 420, have been measured. Ball-milled powder comprising nanoscale grains was sintered to bulk specimens by two alternative routes: hot-pressing and microlaser sintering. The laser-sintered alloy has a porosity of 6% and comprises a mixture of delta ferrite and tempered martensite, and the relative volume fraction varies along the axis of the specimen due to a thermal cycle that evolves with progressive deposition. In contrast, the hot-pressed alloy has a porosity of 0.7% and exhibits a martensitic lath structure with carbide particles at the boundaries of the prior austenite grains. These differences in microstructure lead to significant differences in mechanical properties. For example, the uniaxial tensile strength of the hot-pressed material is one-half of its compressive strength, due to void initiation at the carbide particles at the prior austenite grain boundaries. Nanoindentation measurements reveal a size effect in hardness and also reveal the sensitivity of hardness to the presence of mechanical polishing and electropolishing. © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A novel cemented carbides (W0.7Al0.3)C-0.65-Co with different cobalt contents were prepared by solid-state reaction and hot-pressing technique. Hot-pressing technique as a novel technique was performed to fabricate the bulk bodies of the hard alloys. The novel cemented carbides have superior mechanical properties compared with WC-Co. The density, operate cost of the novel material were lower than WC-Co system. The novel materials were easy to process nanoscale sintering and get the rounded particles in the bulk materials. There is almost no eta-phase in the (W0.7Al0.3)C-0.65-Co cemented carbides system although the carbon deficient get the astonished 35% value.
Resumo:
A novel cemented carbides (W0.5Al0.5)C-0.8-Co with different cobalt contents were prepared by mechanical alloying and hot-pressing technique. Hot-pressing technique as a common technique was performed to fabricate the bulk bodies of the hard alloys. The novel cemented carbides have superior mechanical properties compared to WC-Co. The density, operating cost of the novel material were much lower than WC-Co. There is almost no eta-phase in the (W0.5Al0.5)C-0.8-Co cemented carbides system although the carbon deficient get the value of 20%, and successfully got the nanostructured rounded (W0.5Al0.5)C-0.8 particles.
Resumo:
Novel cemented carbides (W0.4Al0.6)C-0.5-Co With different cobalt contents were prepared by mechanical alloying and hot-pressing technique. Hot-pressing technique as a common technique was performed to fabricate the bulk bodies of the hard alloys. The novel cemented carbides have good mechanical properties compared with WC-Co. The density and operation cost of the novel material were much lower than the WC-Co system. It was easy to process submicroscale sintering with the novel materials and obtain the rounded particles in the bulk materials. There is almost no eta-phase in the (W0.4Al0.6)C-0.5-CO cemented carbides system although the carbon deficient obtains the astonishing value of 50%.
Resumo:
A novel cemented carbides (W0.8Al0.2)C-0.7-Co with different cobalt contents were prepared by mechanical alloying and hot-pressing technique. Hot-pressing technique as a common technique was performed to fabricate the bulk bodies of the hard alloys. The novel cemented carbides have superior mechanical properties compared with WC-Co. The density, operate cost of the novel material were much lower than WC-Co system. The novel materials were easy to process nanoscale sintering and get the rounded particles in the bulk materials.