823 resultados para heterogeneous habitat
Resumo:
Habitat selection decisions by consumers has the potential to shape ecosystems. Understanding the factors that influence habitat selection is therefore critical to understanding ecosystem function. This is especially true of mesoconsumers because they provide the link between upper and lower tropic levels. We examined the factors influencing microhabitat selection of marine mesoconsumers – juvenile giant shovelnose rays (Glaucostegus typus), reticulate whiprays (Himantura uarnak), and pink whiprays (H. fai) – in a coastal ecosystem with intact predator and prey populations and marked spatial and temporal thermal heterogeneity. Using a combination of belt transects and data on water temperature, tidal height, prey abundance, predator abundance and ray behavior, we found that giant shovelnose rays and reticulate whiprays were most often found resting in nearshore microhabitats, especially at low tidal heights during the warm season. Microhabitat selection did not match predictions derived from distributions of prey. Although at a course scale, ray distributions appeared to match predictions of behavioral thermoregulation theory, fine-scale examination revealed a mismatch. The selection of the shallow nearshore microhabitat at low tidal heights during periods of high predator abundance (warm season) suggests that this microhabitat may serve as a refuge, although it may come with metabolic costs due to higher temperatures. The results of this study highlight the importance of predators in the habitat selection decisions of mesoconsumers and that within thermal gradients, factors, such as predation risk, must be considered in addition to behavioral thermoregulation to explain habitat selection decisions. Furthermore, increasing water temperatures predicted by climate change may result in complex trade-offs that might have important implications for ecosystem dynamics.
Resumo:
Invasive grasses are among the worst threats to native biodiversity, but the mechanisms causing negative effects are poorly understood. To investigate the impact of an invasive grass on reptiles, we compared the reptile assemblages that used native kangaroo grass (Themeda triandra), and black spear grass (Heteropogon contortus), to those using habitats invaded by grader grass (Themeda quadrivalvis). There were significantly more reptile species, in greater abundances, in native kangaroo and black spear grass than in invasive grader grass. To understand the sources of negative responses of reptile assemblages to the weed, we compared habitat characteristics, temperatures within grass clumps, food availability and predator abundance among these three grass habitats. Environmental temperatures in grass, invertebrate food availability, and avian predator abundances did not differ among the habitats, and there were fewer reptiles that fed on other reptiles in the invaded than in the native grass sites. Thus, native grass sites did not provide better available thermal environments within the grass, food, or opportunities for predator avoidance. We suggest that habitat structure was the critical factor driving weed avoidance by reptiles in this system, and recommend that the maintenance of heterogeneous habitat structure, including clumping native grasses, with interspersed bare ground, and leaf litter are critical to reptile biodiversity.
Resumo:
Invasive grasses are among the worst threats to native biodiversity, but the mechanisms causing negative effects are poorly understood. To investigate the impact of an invasive grass on reptiles, we compared the reptile assemblages that used native kangaroo grass (Themeda triandra), and black spear grass (Heteropogon contortus), to those using habitats invaded by grader grass (Themeda quadrivalvis). There were significantly more reptile species, in greater abundances, in native kangaroo and black spear grass than in invasive grader grass. To understand the sources of negative responses of reptile assemblages to the weed, we compared habitat characteristics, temperatures within grass clumps, food availability and predator abundance among these three grass habitats. Environmental temperatures in grass, invertebrate food availability, and avian predator abundances did not differ among the habitats, and there were fewer reptiles that fed on other reptiles in the invaded than in the native grass sites. Thus, native grass sites did not provide better available thermal environments within the grass, food, or opportunities for predator avoidance. We suggest that habitat structure was the critical factor driving weed avoidance by reptiles in this system, and recommend that the maintenance of heterogeneous habitat structure, including clumping native grasses, with interspersed bare ground, and leaf litter are critical to reptile biodiversity.
Resumo:
植物的生境在时间和空间上都是异质性的,即使在很小的尺度上这种异质性也是存在的。克隆生长使得克隆植物在理论上更适应利用异质性环境,本文以几种克隆植物为对象,采用实验生态学方法,着重从生理生态特性、信号物质传导方面探讨克隆植物对异质性环境的适应对策。 以匍匐茎克隆植物野草莓(Fragaria vesca)为对象,研究了不同海拔梯度种群(1800m和3900m)对光照和养分资源斑块性分布生境的响应。研究结果显示:与资源的空间同质性处理(I) 和(II) 相比, 资源的空间异质性处理(III) 和(IV) 两个种群野草莓的近端、远端和整个克隆片段的生物量和分株数均获得显著增加。经历低光高养近端分株与经历高光低养的远段分株相连时,相比与低光高养的同质生境,来自两个海拔的种群分配更多的生物量到根;经历高光低养近端分株与经历低光高养远端分株相连时,相比于高光低养的同质生境,来自两个海拔的种群分配更少的生物量到根,类似的生物量分配格局在远端分株也被观察到。相比于高光低养同质性生境,当与低光高养远端分株相连时经历高光低养近端分株有更大的叶面积;相比于高光低养同质性生境,当与低光高养近端分株相连时经历高光低养远端分株有更大叶面积。实验结果表明, 资源交互斑块性生境中野草莓发生了克隆内分工。通过克隆内分工, 克隆植物能有效的利用异质性分布的资源, 缓解资源交互斑块性分布对克隆植物生长的不利影响。 以匍匐茎克隆植物蛇莓(Duchesnea indica)为对象, 研究其在高光照低水分斑块和低光照高水分斑块组成的资源交互斑块性生境中的克隆内分工。结果显示,当生长于高光照低水分(HL)条件下近端分株(basal ramets)与生长于低光照高水分(LH)条件下的远端分株(apical ramets)之间的匍匐茎连接时,近端分株根冠比显著下降,而远端分株根冠比显著增加,近端分株叶面积和远端分株总根长显著增加;当与低光照高水分条件下的远端分株相连时,近端分株叶片光合速率和叶绿素含量也相应增加。此外,克隆分株间资源交互传输显著提高蛇莓的生长表现(生物量和分株数)。因此,在光、水资源交互斑块性环境中克隆植物蛇莓分株在生物量分配、资源获取器官形态和生理特性方面发生了环境诱导的功能特化。这种对局部丰富资源的趋富特化在一定的程度上增强了克隆分株对资源的吸收利用能力,克隆内资源共享有助于缓解资源交互性斑块生境对克隆植物生长的不利影响,有效地提高克隆植物在其生境中存活与定居能力。 一个盆栽实验被采用以便调查克隆整合对经受局部沙埋的根状茎克隆植物沙生苔草(Carex praeclara)的影响,结果显示随着沙埋深度的增加,切断分株间的根状茎连接将显著降低经受沙埋处理分株的存活。当克隆植物经历局部沙埋时,切断分株间根状茎连接对其克隆生长(生物量、分株数和叶片数量)有显著负影响。耗-益(cost-benefit)分析显示,当与经历沙埋处理的远端分株相连时,近端分株的生长表现没有遭受任何负面影响。与经历沙埋处理远端分株相连时,近端分株的光合能力随沙埋深度的增加而增加。分株间的源-汇反馈调节机制所导致的补偿性反应减缓了局部沙埋对克隆植物生长的负效应。因此,克隆整合有助于提高经历局部沙埋克隆植物的存活,克隆植物在沙化地区植被恢复与重建方面具有重要意义。 克隆植物分株间的匍匐茎或根状茎连接不仅可以传输水分、矿质养分、光合产物,而且还可以传输信号物质。以根状茎克隆植物黑褐苔草(Carex alrofusca)为对象,采用盆栽实验研究外源茉莉酸诱导克隆片段相连分株间信号物质传导。结果显示,相比中龄和老龄分株,幼年分株对1mM茉莉酸诱导有显著反应。茉莉酸引起幼年分株叶片浓缩单宁含量显著增加,同时其叶片可溶性碳水化合物和氮含量降低。茉莉酸诱导后,幼年分株被昆虫咬食叶面积比率显著下降。因此匍匐茎或根状茎传也是克隆植物分株间信号物质传导重要通道,克隆植物通过分株间的风险扩散策略增强了对幼嫩植物组织器官的保护,这对克隆植物的存活或生长具有重要意义。
Resumo:
Many industries and academic institutions share the vision that an appropriate use of information originated from the environment may add value to services in multiple domains and may help humans in dealing with the growing information overload which often seems to jeopardize our life. It is also clear that information sharing and mutual understanding between software agents may impact complex processes where many actors (humans and machines) are involved, leading to relevant socioeconomic benefits. Starting from these two input, architectural and technological solutions to enable “environment-related cooperative digital services” are here explored. The proposed analysis starts from the consideration that our environment is physical space and here diversity is a major value. On the other side diversity is detrimental to common technological solutions, and it is an obstacle to mutual understanding. An appropriate environment abstraction and a shared information model are needed to provide the required levels of interoperability in our heterogeneous habitat. This thesis reviews several approaches to support environment related applications and intends to demonstrate that smart-space-based, ontology-driven, information-sharing platforms may become a flexible and powerful solution to support interoperable services in virtually any domain and even in cross-domain scenarios. It also shows that semantic technologies can be fruitfully applied not only to represent application domain knowledge. For example semantic modeling of Human-Computer Interaction may support interaction interoperability and transformation of interaction primitives into actions, and the thesis shows how smart-space-based platforms driven by an interaction ontology may enable natural ad flexible ways of accessing resources and services, e.g, with gestures. An ontology for computational flow execution has also been built to represent abstract computation, with the goal of exploring new ways of scheduling computation flows with smart-space-based semantic platforms.
Resumo:
Submarine canyon systems provide a heterogeneous habitat for deep-sea benthos in terms of topography, hydrography, and the quality and quantity of organic matter present. Enhanced meiofauna densities as found in organically enriched canyon sediments suggest that nematodes, as the dominant metazoan meiobenthic taxon, may play an important role in the benthic food web of these sediments. Very little is known about the natural diets and trophic biology of deep-sea nematodes, but enrichment experiments can shed light on nematode feeding selectivity and trophic position. An in-situ pulse-chase experiment (Feedex) was performed in the Nazaré Canyon on the Portuguese margin in summer 2007 to study nematode feeding behaviour. 13C-labelled diatoms and bacteria were added to sediment cores which were then sampled over a 14-day period. There was differential uptake by the nematode community of the food sources provided, indicating selective feeding processes. 13C isotope results revealed that selective feeding was less pronounced at the surface, compared to the sediment subsurface. This was supported by a higher trophic diversity in surface sediments compared to the subsurface, implying that more food items may be used by the nematode community at the sediment surface. Predatory and scavenging nematodes contributed relatively more to biomass than other feeding types and can be seen as key contributors to the nematode food web at the canyon site. Non-selective deposit feeding nematodes were the dominant trophic group in terms of abundance and contributed substantially to total nematode biomass. The high levels of 'fresh' (bioavailable) organic matter input and moderate hydrodynamic disturbance of the canyon environment lead to a more complex trophic structure in canyon nematode communities than that found on the open continental slope, and favours predator/scavengers and non-selective deposit feeders.
Resumo:
Although genetic diversity is one of the key components of biodiversity, its drivers are still not fully understood. While it is known that genetic diversity is affected both by environmental parameters as well as habitat history, these factors are not often tested together. Therefore, we analyzed 14 microsatellite loci in Abax parallelepipedus, a flightless, forest dwelling ground beetle, from 88 plots in two study regions in Germany. We modeled the effects of historical and environmental variables on allelic richness, and found for one of the regions, the Schorfheide-Chorin, a significant effect of the depth of the litter layer, which is a main component of habitat quality, and of the sampling effort, which serves as an inverse proxy for local population size. For the other region, the Schwäbische Alb, none of the potential drivers showed a significant effect on allelic richness. We conclude that the genetic diversity in our study species is being driven by current local population sizes via environmental variables and not by historical processes in the studied regions. This is also supported by lack of genetic differentiation between local populations sampled from ancient and from recent woodlands. We suggest that the potential effects of former fragmentation and recolonization processes have been mitigated by the large and stable local populations of Abax parallelepipedus in combination with the proximity of the ancient and recent woodlands in the studied landscapes.
Resumo:
Predation risk can strongly constrain how individuals use time and space. Grouping is known to reduce an individual's time investment in costly antipredator behaviours. Whether grouping might similarly provide a spatial release from antipredator behaviour and allow individuals to use risky habitat more and, thus, improve their access to resources is poorly known. We used mosquito larvae, Aedes aegypti, to test the hypothesis that grouping facilitates the use of high-risk habitat. We provided two habitats, one darker, low-risk and one lighter, high-risk, and measured the relative time spent in the latter by solitary larvae versus larvae in small groups. We tested larvae reared under different resource levels, and thus presumed to vary in body condition, because condition is known to influence risk taking. We also varied the degree of contrast in habitat structure. We predicted that individuals in groups should use high-risk habitat more than solitary individuals allowing for influences of body condition and contrast in habitat structure. Grouping strongly influenced the time spent in the high-risk habitat, but, contrary to our expectation, individuals in groups spent less time in the high-risk habitat than solitary individuals. Furthermore, solitary individuals considerably increased the proportion of time spent in the high-risk habitat over time, whereas individuals in groups did not. Both solitary individuals and those in groups showed a small increase over time in their use of riskier locations within each habitat. The differences between solitary individuals and those in groups held across all resource and contrast conditions. Grouping may, thus, carry a poorly understood cost of constraining habitat use. This cost may arise because movement traits important for maintaining group cohesion (a result of strong selection on grouping) can act to exaggerate an individual preference for low-risk habitat. Further research is needed to examine the interplay between grouping, individual movement and habitat use traits in environments heterogeneous in risk and resources. (C) 2015 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Joern Fischer, David B. Lindermayer, and Ioan Fazey (2004). Appreciating Ecological Complexity: Habitat Contours as a Conceptual Landscape Model. Conservation Biology, 18 (5)pp.1245-1253 RAE2008
Resumo:
In common with other farmland species, hares (Lepus spp.) are in widespread decline in agricultural landscapes due to agricultural intensification and habitat loss. We examined the importance of habitat heterogeneity to the Irish hare (Lepus timidus hibernicus) in a pastoral landscape. We used radio-tracking during nocturnal active and diurnal inactive periods throughout one year. In autumn, winter and spring, hares occupied a heterogeneous combination of improved grassland, providing food, and Juncus-dominated rough pasture, providing refuge. In summer, hares significantly increased their use of improved grassland. This homogeneous habitat can fulfil the discrete and varied resource requirements of hares for feeding and shelter at certain times of year. However, improved grassland may be a risky habitat for hares as silage harvesting occurs during their peak birthing period of late spring and early summer. We therefore posit the existence of a putative ecological trap inherent to a homogeneous habitat of perceived high value that satisfies the hares' habitat requirements but which presents risks at a critical time of year. To test this hypothesis in relation to hare populations, work is required to provide data on differential leveret mortality between habitat types.
Resumo:
Tese de Doutoramento, Ciências do Mar (Biologia Marinha)
Resumo:
Unraveling the effect of selection vs. drift on the evolution of quantitative traits is commonly achieved by one of two methods. Either one contrasts population differentiation estimates for genetic markers and quantitative traits (the Q(st)-F(st) contrast) or multivariate methods are used to study the covariance between sets of traits. In particular, many studies have focused on the genetic variance-covariance matrix (the G matrix). However, both drift and selection can cause changes in G. To understand their joint effects, we recently combined the two methods into a single test (accompanying article by Martin et al.), which we apply here to a network of 16 natural populations of the freshwater snail Galba truncatula. Using this new neutrality test, extended to hierarchical population structures, we studied the multivariate equivalent of the Q(st)-F(st) contrast for several life-history traits of G. truncatula. We found strong evidence of selection acting on multivariate phenotypes. Selection was homogeneous among populations within each habitat and heterogeneous between habitats. We found that the G matrices were relatively stable within each habitat, with proportionality between the among-populations (D) and the within-populations (G) covariance matrices. The effect of habitat heterogeneity is to break this proportionality because of selection for habitat-dependent optima. Individual-based simulations mimicking our empirical system confirmed that these patterns are expected under the selective regime inferred. We show that homogenizing selection can mimic some effect of drift on the G matrix (G and D almost proportional), but that incorporating information from molecular markers (multivariate Q(st)-F(st)) allows disentangling the two effects.
Resumo:
Although most raptor species are found mainly in the tropics, information on their home range and spatial requirements in the Neotropics is still scarce. In this study, we used radio telemetry to evaluate the home range and the habitat use and selection of five Roadside hawks, Rupornis magnirostris (Gmelin, 1788) in a heterogeneous landscape in southeastern Brazil. The average home range size calculated using the adaptive kernel method (95% isopleth) was 126.1ha (47.4-266.7ha), but using the minimum convex polygon method (95% isopleth) it was 143.54ha (32.6-382.3ha). The roadside hawk explored a wide variety of habitats, most of them opportunistically, as suggested in the literature. Despite this, habitat quality could influence home range size and promote habitat selection. The observation of habitat use as expected, as well as the relatively small home range size, could be related to the generalist/opportunistic behaviour of the roadside hawk.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)