961 resultados para hepatocyte nuclear factor 1beta
Resumo:
UDP-glucuronosyltransferase (UGT) 1A1 (UGT1A1) catalyzes the glucuronidation of bilirubin in liver. Among all UGT isoforms identified to date, it is the only relevant bilirubin-glucuronidating enzyme in human. Because glucuronoconjugation is the major route of bilirubin elimination, any genetic alteration that affects bilirubin glucuronosyltransferase activity may result in a more or less severe hyperbilirubinemia. In this study, we report the cloning and characterization of the transcriptional regulation of the mouse UGT1A1 gene. Primary-structure analysis of the mouse Thymidine Adevice promoter revealed marked differences with its human homolog. First, the mouse promoter lacks the highly polymorphic thymidine/adenine repeat occurring in the human promoter, which has been associated with some forms of hyperbilirubinemia. Second, an L1 transposon element, which is absent in the human promoter, is found 480 bp upstream of the transcription start site in mouse. Using the electromobility shift and DNase I footprinting experiments, we have identified a hepatocyte nuclear factor 1-binding site in the mouse UGT1A1 promoter that confers responsiveness to both factors HNF1alpha and HNF1beta in HEK293 cells. Furthermore, we show that this element, which is conserved in the human promoter, also confers strong HNF1 responsiveness to the human UGT1A1 gene. Together, these results provide evidence for a major regulatory function of this liver-enriched transcription factor in UGT1A1 activity in both rodents and human.
Resumo:
The recently discovered apolipoprotein AV (apoAV) gene has been reported to be a key player in modulating plasma triglyceride levels. Here we identify the hepatocyte nuclear factor-4 (HNF-4 ) as a novel regulator of human apoAV gene. Inhibition of HNF-4 expression by small interfering RNA resulted in down-regulation of apoAV. Deletion, mutagenesis, and binding assays revealed that HNF-4 directly regulates human apoAV promoter through DR1 [a direct repeat separated by one nucleotide (nt)], and via a novel element for HNF-4 consisting of an inverted repeat separated by 8 nt (IR8). In addition, we show that the coactivator peroxisome proliferator-activated receptor- coactivator-1 was capable of stimulating the HNF-4 -dependent transactivation of apoAV promoter. Furthermore, analyses in human hepatic cells demonstrated that AMP-activated protein kinase (AMPK) and the MAPK signaling pathway regulate human apoAV expression and suggested that this regulation may be mediated, at least in part, by changes in HNF-4 . Intriguingly, EMSAs and mice with a liver-specific disruption of the HNF-4 gene revealed a species-distinct regulation of apoAV by HNF-4 , which resembles that of a subset of HNF-4 target genes. Taken together, our data provide new insights into the binding properties and the modulation of HNF-4 and underscore the role of HNF-4 in regulating triglyceride metabolism.
Resumo:
Alanine aminotransferase (ALT) plays an important role in amino acid metabolism and gluconeogenesis. The preference of carnivorous fish for protein amino acids instead of carbohydrates as a source of energy lead us to study the transcriptional regulation of the mitochondrial ALT (mALT) gene and to characterize the enzyme kinetics and modulation of mALT expression in the kidney of gilthead sea bream (Sparus aurata) under different nutritional and hormonal conditions. 5′-Deletion analysis of mALT promoter in transiently transfected HEK293 cells, site-directed mutagenesis and electrophoretic mobility shift assays allowed us to identify HNF4α as a new factor involved in the transcriptional regulation of mALT expression. Quantitative RT-PCR assays showed that starvation and the administration of streptozotocin (STZ) decreased HNF4α levels in the kidney of S. aurata, leading to the downregulation of mALT transcription. Analysis of the tissue distribution showed that kidney, liver, and intestine were the tissues with higher mALT and HNF4α expression. Kinetic analysis indicates that mALT enzyme is more efficient in catalyzing the conversion of L-alanine to pyruvate than the reverse reaction. From these results, we conclude that HNF4α transactivates the mALT promoter and that the low levels of mALT expression found in the kidney of starved and STZ-treated fish result from a decreased expression of HNF4α. Our findings suggest that the mALT isoenzyme plays a major role in oxidazing dietary amino acids, and points to ALT as a target for a biotechnological action to spare protein and optimize the use of dietary nutrients for fish culture.
Resumo:
Mutations in Na+-glucose transporters (SGLT)-2 and hepatocyte nuclear factor (HNF)-1 alpha genes have been related to renal glycosuria and maturity-onset diabetes of the young 3, respectively. However, the expression of these genes have not been investigated in type 1 and type 2 diabetes. Here in kidney of diabetic rats, we tested the hypotheses that SGLT2 mRNA expression is altered; HNF-1 alpha is involved in this regulation; and glycemic homeostasis is a related mechanism. The in vivo binding of HNF-1 alpha into the SGLT2 promoter region in renal cortex was confirmed by chromatin immunoprecipitation assay. SGLT2 and HNF-1 alpha mRNA expression (by Northern and RT-PCR analysis) and HNF-1 binding activity of nuclear proteins (by EMSA) were investigated in diabetic rats and treated or not with insulin or phlorizin (an inhibitor of SGLT2). Results showed that diabetes increases SGLT2 and HNF-1 alpha mRNA expression (similar to 50%) and binding of nuclear proteins to a HNF-1 consensus motif (similar to 100%). Six days of insulin or phlorizin treatment restores these parameters to nondiabetic-rat levels. Moreover, both treatments similarly reduced glycemia, despite the differences in plasma insulin and urinary glucose concentrations, highlighting the plasma glucose levels as involved in the observed modulations. This study shows that SGLT2 mRNA expression and HNF-1 alpha expression and activity correlate positively in kidney of diabetic rats. It also shows that diabetes-induced changes are reversed by lowering glycemia, independently of insulinemia. Our demonstration that HNF-1 alpha binds DNA that encodes SGLT2 supports the hypothesis that HNF-1 alpha, as a modulator of SGLT2 expression, may be involved in diabetic kidney disease.
Resumo:
Growth hormone (GH) binding to its receptor modulates gene transcription by influencing the amount or activity of transcription factors. In the rat, GH exerts sexually dimorphic effects on liver gene transcription through its pattern of secretion which is intermittent in males and continuous in females. The expression of the CYP2C12 gene coding for the female-specific cytochrome P450 2C12 protein is dependent on the continuous exposure to GH. To identify the transcription factor(s) that mediate(s) this sex-dependent GH effect, we studied the interactions of the CYP2C12 promoter with liver nuclear proteins obtained from male and female rats and from hypophysectomized animals treated or not by continuous GH infusion. GH treatment induced the binding of a protein that we identified as hepatocyte nuclear factor (HNF) 6, the prototype of a novel class of homeodomain transcription factors. HNF-6 competed with HNF-3 for binding to the same site in the CYP2C12 promoter. This HNF-6/HNF-3 binding site conveyed both HNF-6- and HNF-3-stimulated transcription of a reporter gene construct in transient cotransfection experiments. Electrophoretic mobility shift assays showed more HNF-6 DNA-binding activity in female than in male liver nuclear extracts. Liver HNF-6 mRNA was barely detectable in the hypophysectomized rats and was restored to normal levels by GH treatment. This work provides an example of a homeodomain-containing transcription factor that is GH-regulated and also reports on the hormonal regulation of HNF-6.
Resumo:
The relationship between the enzymatic and the transcriptional activity of the bifunctional protein pterin-4a-carbinolamine dehydratase/dimerization cofactor for hepatocyte nuclear factor 1 (DCoH) has been elucidated by site-directed mutagenesis. DCoH dimers harbor a binding site for hepatocyte nuclear factor 1 (HNF1), two active centers that bind pterins, and a saddle-shaped surface that resembles nucleic acid binding domains. Two domains of the protein have been selectively targeted to determine if a change in one activity affects the other. No strong correlation has been found, supporting the idea that carbinolamine dehydratase activity is not required for HNF1 binding in vitro or transcriptional coactivation in vivo. Double mutations in the active center, however, influence the in vivo transcriptional activity but not HNF1 binding. This finding suggests that some active center residues also are used during transcription, possibly for binding of another (macro)molecule. Several mutations in the saddle led to a surprising increase in transcription, therefore linking this domain to transcriptional regulation as well. The transcriptional function of DCoH therefore is composed of two parts, HNF1 binding and another contributing effect that involves the active site and, indirectly, the saddle.
Resumo:
Hepatocyte nuclear factor-4 (HNF4) regulates gene expression by binding to direct repeat motifs of the RG(G/T)TCA sequence separated by one nucleotide (DR1). In this study we demonstrate that endogenous HNF4 present in rat liver nuclear extracts, as well as purified recombinant HNF4, activates transcription from naked DNA templates containing multiple copies of the DR1 element linked to the adenovirus major late promoter. Recombinant HNF4 also activates transcription from the rat cellular retinol binding protein II (CRBPII) promoter in vitro. The region between –105 and –63 bp of this promoter is essential for HNF-mediated transactivation. The addition of a peptide containing the LXXLL motif abolished HNF4-mediated transactivation in vitro suggesting that LXXLL-containing protein factor(s) are involved in HNF4-mediated transactivation in rat liver nuclear extracts. This is the first report on transactivation by HNF4 in a cell-free system derived from rat liver nuclei.
Resumo:
Tissue-specific transcription is regulated in part by cell type-restricted proteins that bind to defined sequences in target genes. The DNA-binding domain of these proteins is often evolutionarily conserved. On this basis, liver-enriched transcription factors were classified into five families. We describe here the mammalian prototype of a sixth family, which we therefore call hepatocyte nuclear factor 6 (HNF-6). It activates the promoter of a gene involved in the control of glucose metabolism. HNF-6 contains two different DNA-binding domains. One of these corresponds to a novel type of homeodomain. The other is homologous to the Drosophila cut domain. A similar bipartite sequence is coded by the genome of Caenorhabditis elegans.
Resumo:
Hepatocyte nuclear factor 4 (HNF-4) is a prominent member of the family of liver-enriched transcription factors, playing a role in the expression of a large number of liver-specific genes. We report here that HNF-4 is a phosphoprotein and that phosphorylation at tyrosine residue(s) is important for its DNA-binding activity and, consequently, for its transactivation potential both in cell-free systems and in cultured cells. Tyrosine phosphorylation did not affect the transport of HNF-4 from the cytoplasm to the nucleus but had a dramatic effect on its subnuclear localization. HNF-4 was concentrated in distinct nuclear compartments, as evidenced by in situ immunofluorescence and electron microscopy. This compartmentalization disappeared when tyrosine phosphorylation was inhibited by genistein. The correlation between the intranuclear distribution of HNF-4 and its ability to activate endogenous target genes demonstrates a phosphorylation signal-dependent pathway in the regulation of transcription factor activity.
Resumo:
Members of the winged helix/forkhead family of transcription factors are believed to play a role in cell-specific gene expression. A cDNA encoding a member of this family of proteins, termed hepatocyte nuclear factor/forkhead homologue 4 (HFH-4), has been isolated from rat lung and rat testis cDNA libraries. This cDNA contains an open reading frame of 421 amino acids with a conserved DNA binding domain and several potential transactivating regions. During murine lung development, a single species of HFH-4-specific transcript (2.4 kb long) is first detected precisely at the start of the late pseudoglandular stage (embryonic day 14.5) and, by in situ hybridization, is specifically localized to the proximal pulmonary epithelium. The unique temporal and spatial pattern of HFH-4 gene expression in the developing lung defines this protein as a marker for the initiation of bronchial epithelial cell differentiation and suggests that it may play an important role in cell fate determination during lung development. In addition to expression in the pulmonary epithelium, RNA blot analysis reveals 2.4-kb HFH-4 transcripts in the testis and oviduct. By using mice with genetic defects in spermatogenesis, HFH-4 expression in the testis is found to be associated with the appearance of haploid germ cells and in situ hybridization studies indicate that HFH-4 expression is confined to stages I-VII of spermatogenesis. This pattern of HFH-4 gene expression during the early stages of differentiation of haploid germ cells suggests that HFH-4 may play a role in regulating stage-specific gene expression and cell-fate determination during lung development and in spermatogenesis.
Resumo:
The Onecut homeodomain transcription factor hepatic nuclear factor 6 (Hnf6) is necessary for proper development of islet beta-cells. Hnf6 is initially expressed throughout the pancreatic epithelium but is downregulated in endocrine cells at late gestation and is not expressed in postnatal islets. Transgenic mice in which Hnf6 expression is maintained in postnatal islets (pdx1(PB)Hnf6) show overt diabetes and impaired glucose-stimulated insulin secretion (GSIS) at weaning. We now define the mechanism whereby maintenance of Hnf6 expression postnatally leads to beta-cell dysfunction. We provide evidence that continued expression of Hnf6 impairs GSIS by altering insulin granule biosynthesis, resulting in a reduced response to secretagogues. Sustained expression of Hnf6 also results in downregulation of the beta-cell-specific transcription factor MafA and a decrease in total pancreatic insulin. These results suggest that downregulation of Hnf6 expression in beta-cells during development is essential to achieve a mature, glucose-responsive beta-cell.
Resumo:
Insulin-dependent diabetes mellitus is an autoimmune disease in which pancreatic islet beta cells are destroyed by a combination of immunological and inflammatory mechanisms. In particular, cytokine-induced production of nitric oxide has been shown to correlate with beta cell apoptosis and/or inhibition of insulin secretion. In the present study, we investigated whether the interleukin (IL)-1beta intracellular signal transduction pathway could be blocked by overexpression of dominant negative forms of the IL-1 receptor interacting protein MyD88. We show that overexpression of the Toll domain or the lpr mutant of MyD88 in betaTc-Tet cells decreased nuclear factor kappaB (NF-kappaB) activation upon IL-1beta and IL-1beta/interferon (IFN)-gamma stimulation. Inducible nitric oxide synthase mRNA accumulation and nitrite production, which required the simultaneous presence of IL-1beta and IFN-gamma, were also suppressed by approximately 70%, and these cells were more resistant to cytokine-induced apoptosis as compared with parental cells. The decrease in glucose-stimulated insulin secretion induced by IL-1beta and IFN-gamma was however not prevented. This was because these dysfunctions were induced by IFN-gamma alone, which decreased cellular insulin content and stimulated insulin exocytosis. These results demonstrate that IL-1beta is involved in inducible nitric oxide synthase gene expression and induction of apoptosis in mouse beta cells but does not contribute to impaired glucose-stimulated insulin secretion. Furthermore, our data show that IL-1beta cellular actions can be blocked by expression of MyD88 dominant negative proteins and, finally, that cytokine-induced beta cell secretory dysfunctions are due to the action of IFN-gamma.
Resumo:
BACKGROUND & AIMS: Knockout studies of the murine Nuclear Factor I-C (NFI-C) transcription factor revealed abnormal skin wound healing and growth of its appendages, suggesting a role in controlling cell proliferation in adult regenerative processes. Liver regeneration following partial hepatectomy (PH) is a well-established regenerative model whereby changes elicited in hepatocytes lead to their rapid and phased proliferation. Although NFI-C is highly expressed in the liver, no hepatic function was yet established for this transcription factor. This study aimed to determine whether NFI-C may play a role in hepatocyte proliferation and liver regeneration. METHODS: Liver regeneration and cell proliferation pathways following two-thirds PH were investigated in NFI-C knockout (ko) and wild-type (wt) mice. RESULTS: We show that the absence of NFI-C impaired hepatocyte proliferation because of plasminogen activator I (PAI-1) overexpression and the subsequent suppression of urokinase plasminogen activator (uPA) activity and hepatocyte growth factor (HGF) signalling, a potent hepatocyte mitogen. This indicated that NFI-C first acts to promote hepatocyte proliferation at the onset of liver regeneration in wt mice. The subsequent transient down regulation of NFI-C, as can be explained by a self-regulatory feedback loop with transforming growth factor beta 1 (TGF-ß1), may limit the number of hepatocytes entering the first wave of cell division and/or prevent late initiations of mitosis. CONCLUSION: NFI-C acts as a regulator of the phased hepatocyte proliferation during liver regeneration.
Resumo:
BACKGROUND & AIMS: Knockout studies of the murine Nuclear Factor I-C (NFI-C) transcription factor revealed abnormal skin wound healing and growth of its appendages, suggesting a role in controlling cell proliferation in adult regenerative processes. Liver regeneration following partial hepatectomy (PH) is a well-established regenerative model whereby changes elicited in hepatocytes lead to their rapid and phased proliferation. Although NFI-C is highly expressed in the liver, no hepatic function was yet established for this transcription factor. This study aimed to determine whether NFI-C may play a role in hepatocyte proliferation and liver regeneration. METHODS: Liver regeneration and cell proliferation pathways following two-thirds PH were investigated in NFI-C knockout (ko) and wild-type (wt) mice. RESULTS: We show that the absence of NFI-C impaired hepatocyte proliferation because of plasminogen activator I (PAI-1) overexpression and the subsequent suppression of urokinase plasminogen activator (uPA) activity and hepatocyte growth factor (HGF) signalling, a potent hepatocyte mitogen. This indicated that NFI-C first acts to promote hepatocyte proliferation at the onset of liver regeneration in wt mice. The subsequent transient down regulation of NFI-C, as can be explained by a self-regulatory feedback loop with transforming growth factor beta 1 (TGF-ß1), may limit the number of hepatocytes entering the first wave of cell division and/or prevent late initiations of mitosis. CONCLUSION: NFI-C acts as a regulator of the phased hepatocyte proliferation during liver regeneration.