992 resultados para heart movement


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The authors studied the trapezius (pars media) and rhomboideus major muscles in movements of flexion, extension, inclination and rotation of the head. The electromyographic records demonstrated that referred muscles are inactive in these different movements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of the current work is to present the results of several numerical simulations of pulsatile blood flow in healthy and diseased arteries and compare with clinical expectations. Different realistic and physiological aspects such as blood flow interaction with arterial walls, effect of heart movement, cardiovascular autoregulation, arterial walls' hyperelasticity and cardiovascular disorders have been incorporated in the models thanks to a direct coupling of Abaqus and STAR-CCM+. Comparisons of implicit and explicit coupling methods in cardiovascular simulations have been discussed. An in-house methodology combined with explicit FSI coupling has reduced considerably calculation time while the simulations stay realistic and reliable for clinicians

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In an experimental model, variable and intermittent contact force (CF) resulted in a significant decrease in lesion volume. In humans, variability of CF during pulmonary vein isolation has not been characterized. Methods and Results-In 20 consecutive patients undergoing CF-guided circumferential pulmonary vein isolation, 914 radiofrequency applications (530 in sinus rhythm and 384 in atrial fibrillation) were analyzed. The variability of the 60% CF range (CF60%) was 17 ± 9.6 g. Hundred seventy-one (19%) applications were delivered with constant, 717 (78%) with variable, and 26 (3%) with intermittent CF. The mean CF and force-time integral were significantly higher during applications with variable than with intermittent or constant CF. There was no significant difference in CF variability, CF60% variability, and force-time integral between applications delivered in sinus rhythm and atrial fibrillation. The main reasons for CF variability were systolo-diastolic heart movement (29%) and respiration (27%). In 10 additional patients, during adenosine-induced atrioventricular block, the minimum CF significantly increased at 19 sites (5.3 ± 4.4 versus 13.4 ± 5.9 g; P < 0.001) and at 16 sites intermittent or variable CF became constant. At only 1 site systolo-diastolic movement remained the main reason for variable CF. Conclusions-CF during pulmonary vein isolation remains highly variable despite efforts to optimize contact. CF and CF parameters were similar during sinus rhythm and atrial fibrillation. The main reasons for CF variability are systolodiastolic heart movement and respiration. The systolo-diastolic peaks and nadirs of CF are because of ventricular contractions at the large majority of pulmonary vein isolation sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose The primary objective of this study was to examine the effect of exercise on subjective sleep quality in heart failure patients. Methods This study used a randomised, controlled trial design with blinded end-point analysis. Participants were randomly assigned to a 12-week programme of education and self-management support (control) or to the same programme with the addition of a tailored physical activity programme designed and supervised by an exercise specialist (intervention). The intervention consisted of 1 hour of aerobic and resistance exercise twice a week. Participants included 108 patients referred to three hospital heart failure services in Queensland, Australia. Results Patients who participated in supervised exercise classes showed significant improvement in subjective sleep quality, sleep latency, sleep disturbance and global sleep quality scores after 12 weeks of supervised hospital based exercise. Secondary analysis showed that improvements in sleep quality were correlated with improvements in geriatric depression score (p=0.00) and exercise performance (p=0.03). General linear models were used to examine whether the changes in sleep quality following intervention occurred independently of changes in depression, exercise performance and weight. Separate models adjusting for each covariate were performed. Results suggest that exercise significantly improved sleep quality independent of changes in depression, exercise performance and weight. Conclusion This study supports the hypothesis that a 12 week program of aerobic and resistance exercise improves subjective sleep quality in patients with heart failure. This is the first randomised controlled trial to examine the role of exercise in the improvement of sleep quality for patients with this disease. While this study establishes exercise as a therapy for poor sleep quality, further research is needed to investigate exercise as a treatment for other parameters of sleep in this population. Study investigators plan to undertake a more in-depth examination within the next 12 months

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Conventional coronary artery bypass grafting (C-CABG) and off-pump CABG (OPCAB) surgery may produce different patients' outcomes, including the extent of cardiac autonomic (CA) imbalance. the beneficial effects of an exercise-based inpatient programme on heart rate variability (HRV) for C-CABG patients have already been demonstrated by our group. However, there are no studies about the impact of a cardiac rehabilitation (CR) on HRV behaviour after OPCAB. the aim of this study is to compare the influence of both operative techniques on HRV pattern following CR in the postoperative (PO) period.Methods: Cardiac autonomic function was evaluated by HRV indices pre- and post-CR in patients undergoing C-CABG (n = 15) and OPCAB (n = 13). All patients participated in a short-term(approximately 5 days) supervised CR programme of early mobilization, consisting of progressive exercises, from active-assistive movements at PO day 1 to climbing flights of stairs at PO day 5.Results: Both groups demonstrated a reduction in HRV following surgery. the CR programme promoted improvements in HRV indices at discharge for both groups. the OPCAB group presented with higher HRV values at discharge, compared to the C-CABG group, indicating a better recovery of CA function.Conclusion: Our data suggest that patients submitted to OPCAB and an inpatient CR programme present with greater improvement in CA function compared to C-CABG.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At the heart of corporate governance and social responsibility discourse is recognition of the fact that the modern corporation is primarily governed by the profit maximisation imperative coupled with moral and ethical concerns that such a limited imperative drives the actions of large and wealthy corporations which have the ability to act in influential and significant ways, shaping how our social world is experienced. The actions of the corporation and its management will have a wide sphere of impact over all of its stakeholders whether these are employees, shareholders, consumers or the community in which the corporation is located. As globalisation has become central to the way we think it is also clear that ‘community’ has an ever expanding meaning which may include workers and communities living very far away from Corporate HQ. In recent years academic commentators have become increasingly concerned about the emphasis on what can be called short-term profit maximisation and the perception that this extremist interpretation of the profit imperative results in morally and ethically unacceptable outcomes.1 Hence demands for more corporate social responsibility. Following Cadbury’s2 classification of corporate social responsibility into three distinct areas, this paper will argue that once the legally regulated tier is left aside corporate responsibility can become so nebulous as to be relatively meaningless. The argument is not that corporations should not be required to act in socially responsible ways but that unless supported by regulation, which either demands high standards, or at the very least incentivises the attainment of such standards such initiatives are doomed to failure. The paper will illustrate by reference to various chosen cases that law’s discourse has already signposted ways to consider and resolve corporate governance problems in the broader social responsibility context.3 It will also illustrate how corporate responsibility can and must be supported by legal measures. Secondly, this paper will consider the potential conflict between an emphasis on corporate social responsibility and the regulatory approach.4 Finally, this paper will place the current interest in corporate social responsibility within the broader debate on the relationship between law and non-legally enforceable norms and will present some reflections on the norm debate arising from this consideration of the CSR movement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El Catholic Worker Movement se ha caracterizado por enmarcarse en las dinámicas de movilización social y acción política no violenta, que respondían, desde su creación en 1933, a un conjunto de problemáticas sociales y económicas sobre las cuales la sociedad civil se interesó y dio inicio a su actividad en escenarios de la política doméstica de Estados Unidos. Pese a ser un movimiento que surgió en un contexto nacional con fundamentación religiosa, el CWM alcanzó el desarrollo de lógicas transnacionales que contribuyeron a la defensa de su causa y a la reivindicación de valores y principios que motivarían posteriormente a la búsqueda de recursos para reforzar su lucha. Así, el proceso de evolución del movimiento tomó dirección en torno a fenómenos como la difusión, la adquisición de repertorios de acción colectiva correspondientes a la no violencia, y al aprovechamiento de factores exógenos y endógenos representados en distintas formas de oportunidad política y capacidad organizativa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to investigate if chronic eccentric strength training (ST) affects heart rate (HR) and heart rate variability (HRV) during sub-maximal isometric voluntary contractions (SIVC). The training group (TG) (9 men, 62 ± 2) was submitted to ST (12 weeks, 2 days/week, 2 - 4 sets of 8-12 repetitions at 75-80% peak torque (PT). The control group (CG) (8 men, 64 ± 4) did not perform ST. The HR and the HRV (RMSSD index) were evaluated during SIVC of the knee extension (15, 30 and 40% of PT). ST increased the eccentric torque only in TG, but did not change the isometric PT and the duration of SIVC. During SIVC, the HR response pattern and the RMSSD index were similar for both groups in pre- and post-training evaluations. Although ST increased the eccentric torque in the TG, it did not generate changes in HR or HRV. © Springer-Verlag 2008.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cardiovascular regulation undergoes wide changes in the different states of sleepwake cycle. In particular, the relationship between spontaneous fluctuations in heart period and arterial pressure clearly shows differences between the two sleep states. In non rapid-eye-movement sleep, heart rhythm is under prevalent baroreflex control, whereas in rapid-eye-movement sleep central autonomic commands prevail (Zoccoli et al., 2001). Moreover, during rapid-eye-movement sleep the cardiovascular variables show wide fluctuations around their mean value. In particular, during rapid-eyemovement sleep, the arterial pressure shows phasic hypertensive events which are superimposed upon the tonic level of arterial pressure. These phasic increases in arterial pressure are accompanied by an increase in heart rate (Sei & Morita, 1996; Silvani et al., 2005). Thus, rapid-eye-movement sleep may represent an “autonomic stress test” for the cardiovascular system, able to unmask pathological patterns of cardiovascular regulation (Verrier et al. 2005), but this hypothesis has never been tested experimentally. The aim of this study was to investigate whether rapid-eye-movement sleep may reveal derangements in central autonomic cardiovascular control in an experimental model of essential hypertension. The study was performed in Spontaneously Hypertensive Rats, which represent the most widely used model of essential hypertension, and allow full control of genetic and environmental confounding factors. In particular, we analyzed the cardiovascular, electroencephalogram, and electromyogram changes associated with phasic hypertensive events during rapid-eyemovement sleep in Spontaneously Hypertensive Rats and in their genetic Wistar Kyoto control strain. Moreover, we studied also a group of Spontaneously Hypertensive Rats made phenotypically normotensive by means of a chronic treatment with an angiotensin converting enzyme inhibitor, the Enalapril maleate, from the age of four weeks to the end of the experiment. All rats were implanted with electrodes for electroencephalographic and electromyographic recordings and with an arterial catheter for arterial pressure measurement. After six days for postoperative recovery, the rats were studied for five days, at an age of ten weeks.The study indicated that the peak of mean arterial pressure increase during the phasic hypertensive events in rapid-eye-movement sleep did not differ significantly between Spontaneously Hypertensive Rats and Wistar Kyoto rats, while on the other hand Spontaneously Hypertensive Rats showed a reduced increase in the frequency of theta rhythm and a reduced tachicardia with respect to Wistar Kyoto rats. The same pattern of changes in mean arterial pressure, heart period, and theta frequency was observed between Spontaneously Hypertensive Rats and Spontaneously Hypertensive Rats treated with Enalapril maleate. Spontaneously Hypertensive Rats do not differ from Wistar Kyoto rats only in terms of arterial hypertension, but also due to multiple unknown genetic differences. Spontaneously Hypertensive Rats were developed by selective breeding of Wistar Kyoto rats based only on the level of arterial pressure. However, in this process, multiple genes possibly unrelated to hypertension may have been selected together with the genetic determinants of hypertension (Carley et al., 2000). This study indicated that Spontaneously Hypertensive Rats differ from Wistar Kyoto rats, but not from Spontaneously Hypertensive Rats treated with Enalapril maleate, in terms of arterial pH and theta frequency. This feature may be due to genetic determinants unrelated to hypertension. In sharp contrast, the persistence of differences in the peak of heart period decrease and the peak of theta frequency increase during phasic hypertensive events between Spontaneously Hypertensive Rats and Spontaneously Hypertensive Rats treated with Enalapril maleate demonstrates that the observed reduction in central autonomic control of the cardiovascular system in Spontaneously Hypertensive Rats is not an irreversible consequence of inherited genetic determinants. Rather, the comparison between Spontaneously Hypertensive Rats and Spontaneously Hypertensive Rats treated with Enalapril maleate indicates that the observed differences in central autonomic control are the result of the hypertension per se. This work supports the view that the study of cardiovascular regulation in sleep provides fundamental insight on the pathophysiology of hypertension, and may thus contribute to the understanding of this disease, which is a major health problem in European countries (Wolf-Maier et al., 2003) with its burden of cardiac, vascular, and renal complications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE Obtaining new details of radial motion of left ventricular (LV) segments using velocity-encoding cardiac MRI. METHODS Cardiac MR examinations were performed on 14 healthy volunteers aged between 19 and 26 years. Cine images for navigator-gated phase contrast velocity mapping were acquired using a black blood segmented κ-space spoiled gradient echo sequence with a temporal resolution of 13.8 ms. Peak systolic and diastolic radial velocities as well as radial velocity curves were obtained for 16 ventricular segments. RESULTS Significant differences among peak radial velocities of basal and mid-ventricular segments have been recorded. Particular patterns of segmental radial velocity curves were also noted. An additional wave of outward radial movement during the phase of rapid ventricular filling, corresponding to the expected timing of the third heart sound, appeared of particular interest. CONCLUSION The technique has allowed visualization of new details of LV radial wall motion. In particular, higher peak systolic radial velocities of anterior and inferior segments are suggestive of a relatively higher dynamics of anteroposterior vs lateral radial motion in systole. Specific patterns of radial motion of other LV segments may provide additional insights into LV mechanics. ADVANCES IN KNOWLEDGE The outward radial movement of LV segments impacted by the blood flow during rapid ventricular filling provides a potential substrate for the third heart sound. A biphasic radial expansion of the basal anteroseptal segment in early diastole is likely to be related to the simultaneous longitudinal LV displacement by the stretched great vessels following repolarization and their close apposition to this segment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the people: a revelation.--The conditions that hold among us.--As time deals with nations.--As to government.--A great people's movement.--Public utilities for the public good.--Labour and its uniting power.--Agencies whereby we shall secure the people's greatest good.--The great nation.--The life of the higher beauty and power.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanical conditioning has been shown to promote tissue formation in a wide variety of tissue engineering efforts. However the underlying mechanisms by which external mechanical stimuli regulate cells and tissues are not known. This is particularly relevant in the area of heart valve tissue engineering (HVTE) owing to the intense hemodynamic environments that surround native valves. Some studies suggest that oscillatory shear stress (OSS) caused by steady flow and scaffold flexure play a critical role in engineered tissue formation derived from bone marrow derived stem cells (BMSCs). In addition, scaffold flexure may enhance nutrient (e.g. oxygen, glucose) transport. In this study, we computationally quantified the i) magnitude of fluid-induced shear stresses; ii) the extent of temporal fluid oscillations in the flow field using the oscillatory shear index (OSI) parameter, and iii) glucose and oxygen mass transport profiles. Noting that sample cyclic flexure induces a high degree of oscillatory shear stress (OSS), we incorporated moving boundary computational fluid dynamic simulations of samples housed within a bioreactor to consider the effects of: 1) no flow, no flexure (control group), 2) steady flow-alone, 3) cyclic flexure-alone and 4) combined steady flow and cyclic flexure environments. We also coupled a diffusion and convention mass transport equation to the simulated system. We found that the coexistence of both OSS and appreciable shear stress magnitudes, described by the newly introduced parameter OSI-t , explained the high levels of engineered collagen previously observed from combining cyclic flexure and steady flow states. On the other hand, each of these metrics on its own showed no association. This finding suggests that cyclic flexure and steady flow synergistically promote engineered heart valve tissue production via OSS, so long as the oscillations are accompanied by a critical magnitude of shear stress. In addition, our simulations showed that mass transport of glucose and oxygen is enhanced by sample movement at low sample porosities, but did not play a role in highly porous scaffolds. Preliminary in-house in vitro experiments showed that cell proliferation and phenotype is enhanced in OSI-t environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanical conditioning has been shown to promote tissue formation in a wide variety of tissue engineering efforts. However the underlying mechanisms by which external mechanical stimuli regulate cells and tissues are not known. This is particularly relevant in the area of heart valve tissue engineering (HVTE) owing to the intense hemodynamic environments that surround native valves. Some studies suggest that oscillatory shear stress (OSS) caused by steady flow and scaffold flexure play a critical role in engineered tissue formation derived from bone marrow derived stem cells (BMSCs). In addition, scaffold flexure may enhance nutrient (e.g. oxygen, glucose) transport. In this study, we computationally quantified the i) magnitude of fluid-induced shear stresses; ii) the extent of temporal fluid oscillations in the flow field using the oscillatory shear index (OSI) parameter, and iii) glucose and oxygen mass transport profiles. Noting that sample cyclic flexure induces a high degree of oscillatory shear stress (OSS), we incorporated moving boundary computational fluid dynamic simulations of samples housed within a bioreactor to consider the effects of: 1) no flow, no flexure (control group), 2) steady flow-alone, 3) cyclic flexure-alone and 4) combined steady flow and cyclic flexure environments. We also coupled a diffusion and convention mass transport equation to the simulated system. We found that the coexistence of both OSS and appreciable shear stress magnitudes, described by the newly introduced parameter OSI-:τ: explained the high levels of engineered collagen previously observed from combining cyclic flexure and steady flow states. On the other hand, each of these metrics on its own showed no association. This finding suggests that cyclic flexure and steady flow synergistically promote engineered heart valve tissue production via OSS, so long as the oscillations are accompanied by a critical magnitude of shear stress. In addition, our simulations showed that mass transport of glucose and oxygen is enhanced by sample movement at low sample porosities, but did not play a role in highly porous scaffolds. Preliminary in-house in vitro experiments showed that cell proliferation and phenotype is enhanced in OSI-:τ: environments.^