976 resultados para headwater streams


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stream bed metal deposits affect the taxon richness, density and taxonomic diversity of primary and secondary producers by a variety of direct or indirect abiotic and biotic processes but little is known about the relative importance of these processes over a deposit metal concentration gradient. Inorganic matter (IM), algal and non-photosynthetic detrital (NPD) dry biomasses were estimated for 10 monthly samples, between 2007 and 2008, from eight sites differing in deposit density. Invertebrate abundance, taxon richness and composition were also determined. Relations between these variables were investigated by canonical correspondence analysis (CCA), generalized estimating equation models and path analysis. The first CCA axis correlates with deposit density and invertebrate abundance, with lumbriculids and chironomids increasing in abundance with deposit density and all other taxa declining. Community structure changes significantly above a deposit density of approximately 8 mg cm, when algal biomass, invertebrate richness and diversity decline. Invertebrate richness and diversity were determined by direct effects of NPD biomass and indirect effects of IM. Algal biomass only had an effect on invertebrate abundance. Possible pH, oxygen, food and ecotoxicological effects of NPD biomass on the biota are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fishes of the present study were collected in the headwater streams of the Sorocaba, Paranapanema and Ribeira de Iguape river basins during the dry period in 2010. A total of 2892 fishes, grouped in 53 species, were captured. The composition of the ichthyofauna captured in the streams of Sorocaba and Paranapanema river basin was greatly similar. On the other hand, the fish fauna of the streams of Ribeira de Iguape river basin were quite different from the ones captured in the others basins, with the occurrence of endangered species (Isbrueckerichthys epakmos and I. duseni) and exotic species (Misgurnus anguillicaudatus). The previous list of fish for the Sorocaba river basin increased with the addition of seven species of Characiformes, one Gymnotiformes and four Siluriformes. © 2012 Check List and Authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The amounts, sources and relative ages of inorganic and organic carbon pools were assessed in eight headwater streams draining watersheds dominated by either forest, pasture, cropland or urban development in the lower Chesapeake Bay region (Virginia, USA). Streams were sampled at baseflow conditions six different times over 1 year. The sources and ages of the carbon pools were characterized by isotopic (δ13C and ∆14C) analyses and excitation emission matrix fluorescence with parallel factor analysis (EEM–PARAFAC). The findings from this study showed that human land use may alter aquatic carbon cycling in three primary ways. First, human land use affects the sources and ages of DIC by controlling different rates of weathering and erosion. Relative to dissolved inorganic carbon (DIC) in forested streams which originated primarily from respiration of young, 14C-enriched organic matter (OM; δ13C = −22.2 ± 3 ‰; ∆14C = 69 ± 14 ‰), DIC in urbanized streams was influenced more by sedimentary carbonate weathering (δ13C = −12.4 ± 1 ‰; ∆14C = −270 ± 37 ‰) and one of pasture streams showed a greater influence from young soil carbonates (δ13C = −5.7 ± 2.5 ‰; ∆14C = 69 ‰). Second, human land use alters the proportions of terrestrial versus autochthonous/microbial sources of stream water OM. Fluorescence properties of dissolved OM (DOM) and the C:N of particulate OM (POM) suggested that streams draining human-altered watersheds contained greater relative contributions of DOM and POM from autochthonous/microbial sources than forested streams. Third, human land uses can mobilize geologically aged inorganic carbon and enable its participation in contemporary carbon cycling. Aged DOM (∆14C = −248 to −202 ‰, equivalent14C ages of 1,811–2,284 years BP) and POM (∆14C = −90 to −88 ‰, 14C ages of 669–887 years BP) were observed exclusively in urbanized streams, presumably a result of autotrophic fixation of aged DIC (−297 to −244 ‰, 14C age = 2,251–2,833 years BP) from sedimentary shell dissolution and perhaps also watershed export of fossil fuel carbon. This study demonstrates that human land use may have significant impacts on the amounts, sources, ages and cycling of carbon in headwater streams and their associated watersheds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[1] Photochemical and microbial transformations of DOM were evaluated in headwater streams draining forested and human-modified lands (pasture, cropland, and urban development) by laboratory incubations. Changes in DOC concentrations, DOC isotopic signatures, and DOM fluorescence properties were measured to assess the amounts, sources, ages, and properties of reactive and refractory DOM under the influence of photochemistry and/or bacteria. DOC in streams draining forest-dominated watersheds was more photoreactive than in streams draining mostly human-modified watersheds, possibly due to greater contributions of terrestrial plant-derived DOC and lower amounts of prior light exposure in forested streams. Overall, the percentage of photoreactive DOC in stream waters was best predicted by the relative content of terrestrial fluorophores. The bioreactivity of DOC was similar in forested and human-modified streams, but variations were correlated with temperature and may be further controlled by the diagenetic status of organic matter. Alterations to DOC isotopes and DOM fluorescence properties during photochemical and microbial incubations were similar between forested and human-modified streams and included (1) negligible effects of microbial alteration on DOC isotopes and DOM fluorescence properties, (2) selective removal of 13C-depleted and 14C-enriched DOC under the combined influence of photochemical and microbial processes, and (3) photochemical alteration of DOM resulting in a preferential loss of terrestrial humic fluorescence components relative to microbial fluorescence components. This study provides a unique comparison of DOC reactivity in a regional group of streams draining forested and human-modified watersheds and indicates the importance of land use on the photoreactivity of DOC exported from upstream watersheds.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The terrestrial export of dissolved organic matter (DOM) is associated with climate, vegetation and land use, and thus is under the influence of climatic variability and human interference with terrestrial ecosystems, their soils and hydrological cycles. The present study provides an assessment of spatial variation of DOM concentrations and export, and interactions between DOM, catchment characteristics, land use and climatic factors in boreal catchments. The influence of catchment characteristics, land use and climatic drivers on the concentrations and export of total organic carbon (TOC), total organic nitrogen (TON) and dissolved organic phosphorus (DOP) was estimated using stream water quality, forest inventory and climatic data from 42 Finnish pristine forested headwater catchments, and water quality monitoring, GIS land use, forest inventory and climatic data from the 36 main Finnish rivers (and their sub-catchments) flowing to the Baltic Sea. Moreover, the export of DOM in relation to land use along a European climatic gradient was studied using river water quality and land use data from four European areas. Additionally, the role of organic and minerogenic acidity in controlling pH levels in Finnish rivers and pristine streams was studied by measuring organic anion, sulphate (SO4) and base cation (Ca, Mg, K and Na) concentrations. In all study catchments, TOC was a major fraction of DOM, with much lower proportions of TON and DOP. Moreover, most of TOC and TON was in a dissolved form. The correlation between TOC and TON concentrations was strong and TOC concentrations explained 78% of the variation in TON concentrations in pristine headwater streams. In a subgroup of 20 headwater catchments with similar climatic conditions and low N deposition in eastern Finland, the proportion of peatlands in the catchment and the proportion of Norway spruce (Picea abies Karsten) of the tree stand had the strongest correlation with the TOC and TON concentrations and export. In Finnish river basins, TOC export increased with the increasing proportion of peatland in the catchment, whereas TON export increased with increasing extent of agricultural land. The highest DOP concentrations and export were recorded in river basins with a high extent of agricultural land and urban areas, reflecting the influence of human impact on DOP loads. However, the most important predictor for TOC, TON and DOP export in Finnish rivers was the proportion of upstream lakes in the catchment. The higher the upstream lake percentage, the lower the export indicating organic matter retention in lakes. Molar TOC:TON ratio decreased from headwater catchments covered by forests and peatlands to the large river basins with mixed land use, emphasising the effect of the land use gradient on the stoichiometry of rivers. This study also demonstrated that the land use of the catchments is related to both organic and minerogenic acidity in rivers and pristine headwater streams. Organic anion dominated in rivers and streams situated in northern Finland, reflecting the higher extent of peatlands in these areas, whereas SO4 dominated in southern Finland and on western coastal areas, where the extent of fertile areas, agricultural land, urban areas, acid sulphate soils, and sulphate deposition is highest. High TOC concentrations decreased pH values in the stream and river water, whereas no correlation between SO4 concentrations and pH was observed. This underlines the importance of organic acids in controlling pH levels in Finnish pristine headwater streams and main rivers. High SO4 concentrations were associated with high base cation concentrations and fertile areas, which buffered the effects of SO4 on pH.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Most models of riverine eco-hydrology and biogeochemistry rely upon bulk parameterization of fluxes. However, the transport and retention of carbon and nutrients in headwater streams is strongly influenced by biofilms (surface-attached microbial communities), which results in strong feedbacks between stream hydrodynamics and biogeochemistry. Mechanistic understanding of the interactions between streambed biofilms and nutrient dynamics is lacking. Here we present experimental results linking microscale observations of biofilm community structure to the deposition and resuspension of clay-sized mineral particles in streams. Biofilms were grown in identical 3 m recirculating flumes over periods of 14-50 days. Fluorescent particles were introduced to each flume, and their deposition was traced over 30 minutes. Particle resuspension from the biofilms was then observed under an increased stream flow, mimicking a flood event. We quantified particle fluxes using flow cytometry and epifluorescence microscopy. We directly observed particle adhesion to the biofilm using a confocal laser scanning microscope. 3-D Optical Coherence Tomography was used to determine biofilm roughness, areal coverage and void space in each flume. These measurements allow us to link biofilm complexity to particle retention during both baseflow and floodflow. The results suggest that increased biofilm complexity favors deposition and retention of fine particles in streams.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

1. Analyses of species association have major implications for selecting indicators for freshwater biomonitoring and conservation, because they allow for the elimination of redundant information and focus on taxa that can be easily handled and identified. These analyses are particularly relevant in the debate about using speciose groups (such as the Chironomidae) as indicators in the tropics, because they require difficult and time-consuming analysis, and their responses to environmental gradients, including anthropogenic stressors, are poorly known. 2. Our objective was to show whether chironomid assemblages in Neotropical streams include clear associations of taxa and, if so, how well these associations could be explained by a set of models containing information from different spatial scales. For this, we formulated a priori models that allowed for the influence of local, landscape and spatial factors on chironomid taxon associations (CTA). These models represented biological hypotheses capable of explaining associations between chironomid taxa. For instance, CTA could be best explained by local variables (e.g. pH, conductivity and water temperature) or by processes acting at wider landscape scales (e.g. percentage of forest cover). 3. Biological data were taken from 61 streams in Southeastern Brazil, 47 of which were in well-preserved regions, and 14 of which drained areas severely affected by anthropogenic activities. We adopted a model selection procedure using Akaike`s information criterion to determine the most parsimonious models for explaining CTA. 4. Applying Kendall`s coefficient of concordance, seven genera (Tanytarsus/Caladomyia, Ablabesmyia, Parametriocnemus, Pentaneura, Nanocladius, Polypedilum and Rheotanytarsus) were identified as associated taxa. The best-supported model explained 42.6% of the total variance in the abundance of associated taxa. This model combined local and landscape environmental filters and spatial variables (which were derived from eigenfunction analysis). However, the model with local filters and spatial variables also had a good chance of being selected as the best model. 5. Standardised partial regression coefficients of local and landscape filters, including spatial variables, derived from model averaging allowed an estimation of which variables were best correlated with the abundance of associated taxa. In general, the abundance of the associated genera tended to be lower in streams characterised by a high percentage of forest cover (landscape scale), lower proportion of muddy substrata and high values of pH and conductivity (local scale). 6. Overall, our main result adds to the increasing number of studies that have indicated the importance of local and landscape variables, as well as the spatial relationships among sampling sites, for explaining aquatic insect community patterns in streams. Furthermore, our findings open new possibilities for the elimination of redundant data in the assessment of anthropogenic impacts on tropical streams.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In dry climate zones, headwater streams are often regulated for water extraction causing intermittency in perennial streams and prolonged drying in intermittent streams. Regulation thereby reduces aquatic habitat downstream of weirs that also form barriers to migration by stream fauna. Environmental flow releases may restore streamflow in rivers, but are rarely applied to headwaters. We sampled fish and crayfish in four regulated headwater streams before and after the release of summer-autumn environmental flows, and in four nearby unregulated streams, to determine whether their abundances increased in response to flow releases. Historical data of fish and crayfish occurrence spanning a 30 year period was compared with contemporary data (electrofishing surveys, Victoria Range, Australia; summer 2008 to summer 2010) to assess the longer-term effects of regulation and drought. Although fish were recorded in regulated streams before 1996, they were not recorded in the present study upstream or downstream of weirs despite recent flow releases. Crayfish (Geocharax sp. nov. 1) remained in the regulated streams throughout the study, but did not become more abundant in response to flow releases. In contrast, native fish (Gadopsis marmoratus, Galaxias oliros, Galaxias maculatus) and crayfish remained present in unregulated streams, despite prolonged drought conditions during 2006-2010, and the assemblages of each of these streams remained essentially unchanged over the 30 year period. Flow release volumes may have been too small or have operated for an insufficient time to allow fish to recolonise regulated streams. Barriers to dispersal may also be preventing recolonisation. Indefinite continuation of annual flow releases, that prevent the unnatural cessation of flow caused by weirs, may eventually facilitate upstream movement of fish and crayfish in regulated channels; but other human-made dispersal barriers downstream need to be identified and ameliorated, to allow native fish to fulfil their life cycles in these headwater streams.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Despite the importance of tropical montane cloud forest streams, studies investigating aquatic communities in these regions are rare and knowledge on the driving factors of community structure is missing. The objectives of this study therefore were to understand how land-use influences habitat structure and macroinvertebrate communities in cloud forest streams of southern Ecuador. We evaluated these relationships in headwater streams with variable land cover, using multivariate statistics to identify relationships between key habitat variables and assemblage structure, and to resolve differences in composition among sites. Results show that shading intensity, substrate type and pH were the environmental parameters most closely related to variation in community composition observed among sites. In addition, macroinvertebrate density and partly diversity was lower in forested sites, possibly because the pH in forested streams lowered to almost 5 during spates. Standard bioindicator metrics were unable to detect the changes in assemblage structure between disturbed and forested streams. In general, our results indicate that tropical montane headwater streams are complex and heterogeneous ecosystems with low invertebrate densities. We also found that some amount of disturbance, i.e. patchy deforestation, can lead at least initially to an increase in macroinvertebrate taxa richness of these streams.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigated controls on the water chemistry of a South Ecuadorian cloud forest catchment which is partly pristine, and partly converted to extensive pasture. From April 2007 to May 2008 water samples were taken weekly to biweekly at nine different subcatchments, and were screened for differences in electric conductivity, pH, anion, as well as element composition. A principal component analysis was conducted to reduce dimensionality of the data set and define major factors explaining variation in the data. Three main factors were isolated by a subset of 10 elements (Ca2+, Ce, Gd, K+, Mg2+, Na+, Nd, Rb, Sr, Y), explaining around 90% of the data variation. Land-use was the major factor controlling and changing water chemistry of the subcatchments. A second factor was associated with the concentration of rare earth elements in water, presumably highlighting other anthropogenic influences such as gravel excavation or road construction. Around 12% of the variation was explained by the third component, which was defined by the occurrence of Rb and K and represents the influence of vegetation dynamics on element accumulation and wash-out. Comparison of base- and fast flow concentrations led to the assumption that a significant portion of soil water from around 30 cm depth contributes to storm flow, as revealed by increased rare earth element concentrations in fast flow samples. Our findings demonstrate the utility of multi-tracer principal component analysis to study tropical headwater streams, and emphasize the need for effective land management in cloud forest catchments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os girinos são organismos diversos e abundantes nos pequenos riachos de cabeceira de florestas tropicais e constituem importantes componentes da diversidade biológica, da trófica e funcional dos sistemas aquáticos. Diferentes características estruturais e limnológicas dos ambientes aquáticos influenciam a organização das assembleias de girinos. Embora o estágio larvar dos anuros seja o mais vulnerável de seu ciclo de vida, sujeito a elevadas taxas de mortalidade, as pesquisas sobre girinos na região neotropical ainda são pouco representativas diante da elevada diversidade de anfíbios desta região e ferramentas que permitam a sua identificação ainda são escassas. Nesta tese, dividida em três capítulos, apresento uma compilação das informações relacionadas aos principais fatores que afetam as assembleias de girinos na região tropical (Capítulo 1), a caracterização morfológica dos girinos encontrados nos riachos durante o estudo e uma proposta de chave dicotômica de identificação (Capítulo 2) e avalio a importância relativa da posição geográfica e da variação temporal de fatores ambientais locais sobre as assembleias de girinos, assim como a correlação entre as espécies de girinos e as variáveis ambientais de 10 riachos, ao longo de 15 meses, nas florestas da REGUA (Capítulo 3). Há pelo menos oito tendências relacionadas à distribuição das assembleias de girinos: (1) o tamanho dos riachos e a diversidade de microhabitats são importantes características abióticas influenciando a riqueza e a composição de espécies; (2) em poças, o gradiente de permanência (e.g., hidroperíodo) e a heterogeneidade do habitat são os principais fatores moldando as assembleias de girinos; (3) a composição de espécies parece ser um parâmetro das assembleias mais relevante do que a riqueza de espécies e deve ser primeiramente considerado durante o planejamento de ações conservacionistas de anuros associados a poças e riachos; (4) a predação parece ser a interação biótica mais importante na estruturação das assembleias de girinos, com predadores vertebrados (e.g. peixes) sendo mais vorazes em habitats permanentes e predadores invertebrados (e.g. larvas de odonata) sendo mais vorazes em ambientes temporários; (5) os girinos podem exercer um efeito regulatório, predando ovos e girinos recém eclodidos; (6) o uso do microhabitat varia em função da escolha do habitat reprodutivo pelos adultos, presença de predadores, filogenia, estágio de desenvolvimento e heterogeneidade do habitat; (7) os fatores históricos restringem os habitats reprodutivos que uma espécie utiliza, impondo restrições comportamentais e fisiológicas; (8) a variação temporal nos fatores bióticos (e.g., fatores de risco), abióticos (e.g., distribuição de chuvas), e no padrão de reprodução das espécies pode interferir na estrutura das assembleias de girinos tropicais. A variação temporal na heterogeneidade ambiental dos riachos da REGUA resultou na previsibilidade das assembleias locais de girinos, sendo que os parâmetros ambientais explicaram 23% da variação na sua composição. Os parâmetros espaciais explicaram uma porção menor da variação nas assembleias (16%), enquanto uma porção relativamente elevada da variação temporal da heterogeneidade ambiental foi espacialmente estruturada (18%). As variáveis abióticas que apresentaram as maiores correlação com a composição das assembleias de girinos foram a proporção de folhiço e de rochas no fundo do riacho, e secundariamente a profundidade, a condutividade e a temperatura. O gradiente gerado pela proporção de folhiço e de rochas representou a transição entre riachos permanentes e intermitentes. Este gradiente proporcionou o turnover de espécies, o qual também seguiu um gradiente de condutividade, temperatura, profundidade, e em menor extensão, de hidroperíodo e largura, que estiveram fortemente associado ao grau de permanência dos riachos. Estes resultados corroboram tanto a hipótese do controle ambiental, como do controle biótico de comunidades e indicam que a variação temporal da heterogeneidade ambiental e a variação na posição geográfica são importantes para a estruturação local de assembleias de girinos da REGUA. Os resultados também permitiram distinguir entre assembleias de girinos exclusivas de riachos permanentes, exclusivas de riachos intermitentes e aquelas registradas nos dois tipos de riachos. Os resultados deste capítulo são relevantes para compreender em que extensão os efeitos da variação temporal na heterogeneidade ambiental e de processos espaciais afetam localmente a estruturação de assembleias de girinos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gymnodiptychus integrigymnatus is a critically endangered species endemic to the Gaoligongshan Mountains. It was thought to be only distributed in several headwater-streams of the Longchuanjiang River (west slope of the Gaoligongshan Mountains, belonging to the Irrawaddy River drainage). In recent years, dozens of G. integrigymnatus specimens have been collected in some streams on the east slope of the Gaoligongshan Mountains (the Salween drainage). We performed a morphological and genetic analyses (based on cytochrome b and D-loop) of the newly discovered populations of G. integrigymnatus to determine whether the degree of separation of these populations warrants species status. Our analysis from the cytochrome b gene revealed that nine individuals from the Irrawaddy drainage area and seven individuals from the Salween drainage area each have only one unique haplotype. The genetic distance between the two haplotypes is 1.97%. Our phylogenetic analysis revealed that G. integrigymnatus is closely related to highly specialized schizothoracine fishes. Analysis from the mitochondrial control region revealed that G. integrigymnatus has relatively high genetic diversity (pi was 0.00891 and h was 0.8714), and individuals from different river drainages do not share the same haplotypes. The AMOVA results indicated 87.27% genetic variability between the Salween and Irrawaddy populations. Phylogenetic trees show two major geographic groups corresponding to the river systems. We recommend that G. integrigymnatus should be considered as a high priority for protected species status in the Gaoligongshan Mountains National Nature Reserve, and that the area of the Gaoligongshan Mountains National Nature Reserve should be expanded to cover the entire distribution of G. integrigymnatus. Populations of G. integrigymnatus from different river systems should be treated as evolutionarily significant units.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Invertebrate animals in headwater streams depend upon leaves, wood and bark for both food and living space. This project demonstrated the strength of that dependence where the patchiness in habitat is influenced at the smallest spatial scales by the movement of sediments, and at the largest by agricultural clearing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)