990 resultados para habitat maps


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years there has been an increase in community-based monitoring programmes developed and implemented worldwide. This paper describes how the data collected from such a programme could be integrated into a Geographic Information System (GIS) to create temperate subtidal marine habitat maps. A differential Global Positioning System was utilized to accurately record the location of the trained community-based SCUBA diver data. These georeferenced data sets were then used to classify benthic habitats using an aerial photograph and digitizing techniques. This study demonstrated that trained community-based volunteers can collect data that can be utilized within a GIS to create reliable and cost-effective maps of shallow temperate subtidal rocky reef systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Map comparison is a relatively uncommon practice in acoustic seabed classification to date, contrary to the field of land remote sensing, where it has been developed extensively over recent decades. The aim here is to illustrate the benefits of map comparison in the underwater realm with a case study of three maps independently describing the seabed habitats of the Te Matuku Marine Reserve (Hauraki Gulf, New Zealand). The maps are obtained from a QTC View classification of a single-beam echosounder (SBES) dataset, manual segmentation of a sidescan sonar (SSS) mosaic, and automatic classification of a backscatter dataset from a multibeam echosounder (MBES). The maps are compared using pixel-to-pixel similarity measures derived from the literature in land remote sensing. All measures agree in presenting the MBES and SSS maps as the most similar, and the SBES and SSS maps as the least similar. The results are discussed with reference to the potential of MBES backscatter as an alternative to SSS mosaic for imagery segmentation and to the potential of joint SBES–SSS survey for improved habitat mapping. Other applications of map-similarity measures in acoustic classification of the seabed are suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 2014, UniDive (The University of Queensland Underwater Club) conducted an ecological assessment of the Point Lookout Dive sites for comparison with similar surveys conducted in 2001 - the PLEA project. Involvement in the project was voluntary. Members of UniDive who were marine experts conducted training for other club members who had no, or limited, experience in identifying marine organisms and mapping habitats. Since the 2001 detailed baseline study, no similar seasonal survey has been conducted. The 2014 data is particularly important given that numerous changes have taken place in relation to the management of, and potential impacts on, these reef sites. In 2009, Moreton Bay Marine Park was re-zoned, and Flat Rock was converted to a marine national park zone (Green zone) with no fishing or anchoring. In 2012, four permanent moorings were installed at Flat Rock. Additionally, the entire area was exposed to the potential effects of the 2011 and 2013 Queensland floods, including flood plumes which carried large quantities of sediment into Moreton Bay and surrounding waters. The population of South East Queensland has increased from 2.49 million in 2001 to 3.18 million in 2011 (BITRE, 2013). This rapidly expanding coastal population has increased the frequency and intensity of both commercial and recreational activities around Point Lookout dive sites (EPA 2008). Habitats were mapped using a combination of towed GPS photo transects, aerial photography and expert knowledge. This data provides georeferenced information regarding the major features of each of the Point Lookout Dive Sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coral reef maps at various spatial scales and extents are needed for mapping, monitoring, modelling, and management of these environments. High spatial resolution satellite imagery, pixel <10 m, integrated with field survey data and processed with various mapping approaches, can provide these maps. These approaches have been accurately applied to single reefs (10-100 km**2), covering one high spatial resolution scene from which a single thematic layer (e.g. benthic community) is mapped. This article demonstrates how a hierarchical mapping approach can be applied to coral reefs from individual reef to reef-system scales (10-1000 km**2) using object-based image classification of high spatial resolution images guided by ecological and geomorphological principles. The approach is demonstrated for three individual reefs (10-35 km**2) in Australia, Fiji, and Palau; and for three complex reef systems (300-600 km**2) one in the Solomon Islands and two in Fiji. Archived high spatial resolution images were pre-processed and mosaics were created for the reef systems. Georeferenced benthic photo transect surveys were used to acquire cover information. Field and image data were integrated using an object-based image analysis approach that resulted in a hierarchically structured classification. Objects were assigned class labels based on the dominant benthic cover type, or location-relevant ecological and geomorphological principles, or a combination thereof. This generated a hierarchical sequence of reef maps with an increasing complexity in benthic thematic information that included: 'reef', 'reef type', 'geomorphic zone', and 'benthic community'. The overall accuracy of the 'geomorphic zone' classification for each of the six study sites was 76-82% using 6-10 mapping categories. For 'benthic community' classification, the overall accuracy was 52-75% with individual reefs having 14-17 categories and reef systems 20-30 categories. We show that an object-based classification of high spatial resolution imagery, guided by field data and ecological and geomorphological principles, can produce consistent, accurate benthic maps at four hierarchical spatial scales for coral reefs of various sizes and complexities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surveying habitats critical to the survival of grey nurse sharks in South-East Queensland has mapped critical habitats, gathered species inventories and developed protocols for ecological monitoring of critical habitats in southern Queensland. This information has assisted stakeholders with habitat definition and effective management. In 2002 members of UniDive applied successfully for World Wide Fund for Nature, Threatened Species Network funds to map the critical Grey Nurse Shark Habitats in south east Queensland. UniDive members used the funding to survey, from the boats of local dive operators, Wolf Rock at Double Island Point, Gotham, Cherub's Cave, Henderson's Rock and China Wall at North Moreton and Flat Rock at Point Look Out during 2002 and 2003. These sites are situated along the south east Queensland coast and are known to be key Grey Nurse Shark aggregation sites. During the project UniDive members were trained in mapping and survey techniques that include identification of fish, invertebrates and substrate types. Training was conducted by experts from the University of Queensland (Centre of Marine Studies, Biophysical Remote Sensing) and the Queensland Parks and Wildlife Service who are also UniDive members. The monitoring methods (see methods) are based upon results of the UniDive Coastcare project from 2002, the international established Reef Check program and research conducted by Biophysical Remote Sensing and the Centre of Marine Studies. Habitats were mapped using a combination of towed GPS photo transects, aerial photography, bathymetry surveys and expert knowledge. This data provides georeferenced information regarding the major features of each of Sites mapped including Wolf Rock

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Habitat requirements of fish are most strict during the early life stages, and the quality and quantity of reproduction habitats lays the basis for fish production. A considerable number of fish species in the northern Baltic Sea reproduce in the shallow coastal areas, which are also the most heavily exploited parts of the brackish marine area. However, the coastal fish reproduction habitats in the northern Baltic Sea are poorly known. The studies presented in this thesis focused on the influence of environmental conditions on the distribution of coastal reproduction habitats of freshwater fish. They were conducted in vegetated littoral zone along an exposure and salinity gradient extending from the innermost bays to the outer archipelago on the south-western and southern coasts of Finland, in the northern Baltic Sea. Special emphasis was placed on reed-covered Phragmites australis shores, which form a dominant vegetation type in several coastal archipelago areas. The main aims of this research were to (1) develop and test new survey and mapping methods, (2) investigate the environmental requirements that govern the reproduction of freshwater fish in the coastal area and (3) survey, map and model the distribution of the reproduction habitats of pike (Esox lucius) and roach (Rutilus rutilus). The white plate and scoop method with a standardized sampling time and effort was demonstrated to be a functional method for sampling the early life stages of fish in dense vegetation and shallow water. Reed-covered shores were shown to form especially important reproduction habitats for several freshwater fish species, such as pike, roach, other cyprinids and burbot, in the northern Baltic Sea. The reproduction habitats of pike were limited to sheltered reed- and moss-covered shores of the inner and middle archipelago, where suitable zooplankton prey were available and the influence of the open sea was low. The reproduction habitats of roach were even more limited and roach reproduction was successful only in the very sheltered reed-covered shores of the innermost bay areas, where salinity remained low (< 4‰) during the spawning season due to freshwater inflow. After identifying the critical factors restricting the reproduction of pike and roach, the spatial distribution of their reproduction habitats was successfully mapped and modelled along the environmental gradients using only a few environmental predictor variables. Reproduction habitat maps are a valuable tool promoting the sustainable use and management of exploited coastal areas and helping to maintain the sustainability of fish populations. However, the large environmental gradients and the extensiveness of the archipelago zone in the northern Baltic Sea demand an especially high spatial resolution of the coastal predictor variables. Therefore, the current lack of accurate large-scale, high-resolution spatial data gathered at exactly the right time is a considerable limitation for predictive modelling of shallow coastal waters.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This is a report to the California Department of Fish and Game. Between 2003 and 2008, the Foundation of CSUMB produced fish habitat maps and GIS layers for CDFG based on CDFG field data. This report describes the data entry, mapping, and website construction procedures associated with the project. Included are the maps that have been constructed. This report marks the completion of the Central Coast region South District Basin Planning and Habitat Mapping Project. (Document contains 40 pages)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Over the past four decades, the state of Hawaii has developed a system of eleven Marine Life Conservation Districts (MLCDs) to conserve and replenish marine resources around the state. Initially established to provide opportunities for public interaction with the marine environment, these MLCDs vary in size, habitat quality, and management regimes, providing an excellent opportunity to test hypotheses concerning marine protected area (MPA) design and function using multiple discreet sampling units. NOAA/NOS/NCCOS/Center for Coastal Monitoring and Assessment’s Biogeography Team developed digital benthic habitat maps for all MLCD and adjacent habitats. These maps were used to evaluate the efficacy of existing MLCDs for biodiversity conservation and fisheries replenishment, using a spatially explicit stratified random sampling design. Coupling the distribution of habitats and species habitat affinities using GIS technology elucidates species habitat utilization patterns at scales that are commensurate with ecosystem processes and is useful in defining essential fish habitat and biologically relevant boundaries for MPAs. Analysis of benthic cover validated the a priori classification of habitat types and provided justification for using these habitat strata to conduct stratified random sampling and analyses of fish habitat utilization patterns. Results showed that the abundance and distribution of species and assemblages exhibited strong correlations with habitat types. Fish assemblages in the colonized and uncolonized hardbottom habitats were found to be most similar among all of the habitat types. Much of the macroalgae habitat sampled was macroalgae growing on hard substrate, and as a result showed similarities with the other hardbottom assemblages. The fish assemblages in the sand habitats were highly variable but distinct from the other habitat types. Management regime also played an important role in the abundance and distribution of fish assemblages. MLCDs had higher values for most fish assemblage characteristics (e.g. biomass, size, diversity) compared with adjacent fished areas and Fisheries Management Areas (FMAs) across all habitat types. In addition, apex predators and other targeted resources species were more abundant and larger in the MLCDs, illustrating the effectiveness of these closures in conserving fish populations. Habitat complexity, quality, size and level of protection from fishing were important determinates of MLCD effectiveness with respect to their associated fish assemblages. (PDF contains 217 pages)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coral reef ecosystems are some of the most complex and important ecosystems in the marine environment. They are also among the most biologically diverse and economically valuable ecosystems on earth, producing billions of dollars in food, as well as providing a suite of ecological services, such as recreation and tourism activities and coastal protection from storm and wave action. Yet, despite their value and importance, these fragile ecosystems are declining at an alarming rate (Waddell and Clarke (eds.) 2008) due to a myriad of threats both natural and manmade, including climate change, fishing pressure, and runoff and sedimentation. In response, the Unites States Coal Reef Task Force was established in 1998 by Presidential Executive Order 13089 to lead U.S. efforts to preserve and protect the nation’s coral reef ecosystems. In order to better understand the current state of coral reef ecosystems and successfully mitigate the impacts of stressors, informational products, such as benthic (or sea floor) habitat maps, are critical. Benthic habitat maps support the ability to prioritize areas for further study and protection, and offer a baseline to evaluate the changes in ecosystems over time. In 2000, the United States Coral Reef Task Force charged NOAA with leading federal efforts to produce comprehensive digital maps of all U.S. shallow-water (approximately 0 to 30 m in depth) coral reef ecosystem habitats.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We used ground surveys to identify breeding habitat for Whimbrel (Numenius phaeopus) in the outer Mackenzie Delta, Northwest Territories, and to test the value of high-resolution IKONOS imagery for mapping additional breeding habitat in the Delta. During ground surveys, we found Whimbrel nests (n = 28) in extensive areas of wet-sedge low-centered polygon (LCP) habitat on two islands in the Delta (Taglu and Fish islands) in 2006 and 2007. Supervised classification using spectral analysis of IKONOS imagery successfully identified additional areas of wet-sedge habitat in the region. However, ground surveys to test this classification found that many areas of wet-sedge habitat had dense shrubs, no standing water, and/or lacked polygon structure and did not support breeding Whimbrel. Visual examination of the IKONOS imagery was necessary to determine which areas exhibited LCP structure. Much lower densities of nesting Whimbrel were also found in upland habitats near wetlands. We used habitat maps developed from a combination of methods, to perform scenario analyses to estimate the potential effects of the Mackenzie Gas Project on Whimbrel habitat. Assuming effective complete habitat loss within 20 m, 50 m, or 250 m of any infrastructure or pipeline, the currently proposed pipeline development would result in loss of 8%, 12%, or 30% of existing Whimbrel habitat. If subsidence were to occur, most Whimbrel habitat could become unsuitable. If the facility is developed, follow-up surveys will be required to test these models.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Deakin University along with the CRC for Coastal Zone, Estuary and Waterway Management, the Glenelg Hopkins CMA and the Marine & Coastal Community Network have formed a partnership to map the benthic habitats at 14 sites across approximately 5% of Victorian State waters. The project is funded through the Federal Government by the Natural Heritage Trust and brings together expertise from universities, government agencies and private enterprise. We will be using hydro-acoustic sonar technologies, towed video camera and remotely operated vehicles to collect information on the types of substrate and bathymetry to derive habitat maps. The coastal fringe of Victoria encompasses rich and diverse ecosystems which support a range of human uses including commercial and recreational fisheries, whale watching, navigation, aquaculture and gas development. The Deakin lead initiative will map from the 10-metre contour (safe ship passage) to the three nautical mile mark for selected regions and will provide a geospatial framework for managing and gaining better understanding of the near-shore marine environment Research products will be used for management, educational and research purposes over the coming years.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Deakin University and the University of Tasmania were commissioned by Parks Victoria (PV) to create two updated habitat maps for areas within the Corner Inlet and Nooramunga Marine and Coastal Park and Ramsar area. The team obtained a ground-truth data set using in situ video and still photographs. This dataset was used to develop and assess predictive models of benthic marine habitat distributions incorporating data from both ALOS (Advanced Land Observation Satellite) imagery atmospherically corrected by CSIRO and LiDAR (Light Detection and Ranging) bathymetry. This report describes the results of the mapping effort as well as the methodology used to produce these habitat maps.

Overall accuracies of habitat classifications were good, returning overall accuracies >73 % and kappa values > 0.62 for both study localities. Habitats predicted with highest accuracies included Zosteraceae in Nooramunga (91 %), reef in Corner Inlet (80 %), and bare sediment (no-visible macrobiota/no-visible seagrass classes; both > 76 %). The majority of classification errors were due to the misclassification of areas of sparse seagrass as bare sediment. For the Corner Inlet study locality the no-visible macrobiota (10,698 ha), Posidonia (4,608 ha) and Zosteraceae (4,229 ha) habitat classes covered the most area. In Nooramunga no-visible seagrass (5,538 ha), Zosteraceae (4,060 ha) and wet saltmarsh (1,562 ha) habitat classes were most dominant.

In addition to the commissioned work preliminary change detection analyses were undertaken as part of this project. These analyses indicated shifts in habitat extents in both study localities since the late 1990s/2000. In particular, a post-classification analysis highlighted that there were considerable increases in seagrass habitat (primarily Zosteraceae) throughout the littoral zones and river/creek mouths of both study localities. Further, the numerous channel systems remained stable and were free of seagrass at both times. A substantial net loss of Posidonia in the Corner Inlet locality is likely but requires further investigation due to potential misclassifications between habitats in both the 1998 map (Roob et al. 1998) and the current mapping. While the unsupervised Independent Components Analysis (ICA) change detection technique indicated some changes in habitat extent and distribution, considerable areas of habitat change observed in the post-classification approach are questionable, and may reflect misclassifications rather than real change. A particular example of this is an apparent large decrease in Zosteraceae and increase in Posidonia being related to the classification of Posidonia beds as Zosteraceae in the 1998 mapping. Despite this, we believe that changes indicated by both the ICA and post-classification approaches have a high likelihood of being ‘actual’ change. A pattern of gains and losses of Zosteraceae in the region north of Stockyard channel is an example of this. Further analyses and refinements of approaches in change detection analyses such as would improve confidence in the location and extent of habitat changes over this time period.

This work has been successful in providing new baseline maps using a repeatable method meaning that any future changes in intertidal and shallow water marine habitats may be assessed in a consistent way with quantitative error assessments. In wider use, these maps should also allow improved conservation planning, advance fisheries and catchment management, and progress infrastructure planning to limit impacts on the Inlet environment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An understanding of the distribution and extent of marine habitats is essential for the implementation of ecosystem-based management strategies. Historically this had been difficult in marine environments until the advancement of acoustic sensors. This study demonstrates the applicability of supervised learning techniques for benthic habitat characterization using angular backscatter response data. With the advancement of multibeam echo-sounder (MBES) technology, full coverage datasets of physical structure over vast regions of the seafloor are now achievable. Supervised learning methods typically applied to terrestrial remote sensing provide a cost-effective approach for habitat characterization in marine systems. However the comparison of the relative performance of different classifiers using acoustic data is limited. Characterization of acoustic backscatter data from MBES using four different supervised learning methods to generate benthic habitat maps is presented. Maximum Likelihood Classifier (MLC), Quick, Unbiased, Efficient Statistical Tree (QUEST), Random Forest (RF) and Support Vector Machine (SVM) were evaluated to classify angular backscatter response into habitat classes using training data acquired from underwater video observations. Results for biota classifications indicated that SVM and RF produced the highest accuracies, followed by QUEST and MLC, respectively. The most important backscatter data were from the moderate incidence angles between 30° and 50°. This study presents initial results for understanding how acoustic backscatter from MBES can be optimized for the characterization of marine benthic biological habitats. © 2012 by the authors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Building on a habitat mapping project completed in 2011, Deakin University was commissioned by Parks Victoria (PV) to apply the same methodology and ground-truth data to a second, more recent and higher resolution satellite image to create habitat maps for areas within the Corner Inlet and Nooramunga Marine and Coastal Park and Ramsar area. A ground-truth data set using in situ video and still photographs was used to develop and assess predictive models of benthic marine habitat distributions incorporating data from both RapidEye satellite imagery (corrected for atmospheric and water column effects by CSIRO) and LiDAR (Light Detection and Ranging) bathymetry. This report describes the results of the mapping effort as well as the methodology used to produce these habitat maps.

Overall accuracies of habitat classifications were good, with error rates similar to or better than the earlier classification (>73 % and kappa values > 0.58 for both study localities). The RapidEye classification failed to accurately detect Pyura and reef habitat classes at the Corner Inlet locality, possibly due to differences in spectral frequencies. For comparison, these categories were combined into a ‘non-seagrass’ category, similar to the one used at the Nooramunga locality in the original classification. Habitats predicted with highest accuracies differed from the earlier classification and were Posidonia in Corner Inlet (89%), and bare sediment (no-visible seagrass class) in Nooramunga (90%). In the Corner Inlet locality reef and Pyura habitat categories were not distinguishable in the repeated classification and so were combined with bare sediments. The majority of remaining classification errors were due to the misclassification of Zosteraceae as bare sediment and vice versa. Dominant habitats were the same as those from the 2011 classification with some differences in extent. For the Corner Inlet study locality the no-visible seagrass category remained the most extensive (9059 ha), followed by Posidonia (5,513 ha) and Zosteraceae (5,504 ha). In Nooramunga no-visible seagrass (6,294 ha), Zosteraceae (3,122 ha) and wet saltmarsh (1,562 ha) habitat classes were most dominant.

Change detection analyses between the 2009 and 2011 imagery were undertaken as part of this project, following the analyses presented in Monk et al. (2011) and incorporating error estimates from both classifications. These analyses indicated some shifts in classification between Posidonia and Zosteraceae as well as a general reduction in the area of Zosteraceae. Issues with classification of mixed beds were apparent, particularly in the main Posidonia bed at Nooramunga where a mosaic of Zosteraceae and Posidonia was seen that was not evident in the ALOS classification. Results of a reanalysis of the 1998-2009 change detection illustrating effects of binning of mixed beds is also provided as an appendix.

This work has been successful in providing baseline maps at an improved level of detail using a repeatable method meaning that any future changes in intertidal and shallow water marine habitats may be assessed in a consistent way with quantitative error assessments. In wider use, these maps should also allow improved conservation planning, advance fisheries and catchment management, and progress infrastructure planning to limit impacts on the Inlet environment.