995 resultados para green function
Resumo:
A generalized asymptotic expansion in the far field for the problem of cylindrical wave reflection at a homogeneous impedance plane is derived. The expansion is shown to be uniformly valid over all angles of incidence and values of surface impedance, including the limiting cases of zero and infinite impedance. The technique used is a rigorous application of the modified steepest descent method of Ot
Resumo:
This paper is concerned with the problem of propagation from a monofrequency coherent line source above a plane of homogeneous surface impedance. The solution of this problem occurs in the kernel of certain boundary integral equation formulations of acoustic propagation above an impedance boundary, and the discussion of the paper is motivated by this application. The paper starts by deriving representations, as Laplace-type integrals, of the solution and its first partial derivatives. The evaluation of these integral representations by Gauss-Laguerre quadrature is discussed, and theoretical bounds on the truncation error are obtained. Specific approximations are proposed which are shown to be accurate except in the very near field, for all angles of incidence and a wide range of values of surface impedance. The paper finishes with derivations of partial results and analogous Laplace-type integral representations for the case of a point source.
Resumo:
The electron Green's function is obtained in the Bloch-Nordsieck approximation of three-dimensional QED. Dimensional regularization is used in the intermediate stages of calculation.
Resumo:
The Green function for a spin-1/2 charged particle in the presence of an external plane wave electromagnetic field is calculated by algebraic techniques in terms of the free-particle Green function.
Resumo:
The Lempert function for a set of poles in a domain of Cn at a point z is obtained by taking a certain infimum over all analytic disks going through the poles and the point z, and majorizes the corresponding multi-pole pluricomplex Green function. Coman proved that both coincide in the case of sets of two poles in the unit ball. We give an example of a set of three poles in the unit ball where this equality fails.
Resumo:
We compute the partition function of an anyon-like harmonic oscillator. The well known results for both the bosonic and fermionic oscillators are then re-obtained as particular cases of our function. The technique we employ is a non-relativistic version of the Green function method used in the computation of one-loop effective actions of quantum field theory.
Resumo:
This work describes a simulation tool being developed at UPC to predict the microwave nonlinear behavior of planar superconducting structures with very few restrictions on the geometry of the planar layout. The software is intended to be applicable to most structures used in planar HTS circuits, including line, patch, and quasi-lumped microstrip resonators. The tool combines Method of Moments (MoM) algorithms for general electromagnetic simulation with Harmonic Balance algorithms to take into account the nonlinearities in the HTS material. The Method of Moments code is based on discretization of the Electric Field Integral Equation in Rao, Wilton and Glisson Basis Functions. The multilayer dyadic Green's function is used with Sommerfeld integral formulation. The Harmonic Balance algorithm has been adapted to this application where the nonlinearity is distributed and where compatibility with the MoM algorithm is required. Tests of the algorithm in TM010 disk resonators agree with closed-form equations for both the fundamental and third-order intermodulation currents. Simulations of hairpin resonators show good qualitative agreement with previously published results, but it is found that a finer meshing would be necessary to get correct quantitative results. Possible improvements are suggested.
Resumo:
The anharmonic, multi-phonon (MP), and Oebye-Waller factor (OW) contributions to the phonon limited resistivity (;0) of metals derived by Shukla and Muller (1979) by the doubletime temperature dependent Green function method have been numerically evaluated for Na and K in the high temperature limit. The anharmonic contributions arise from the cubic and quartic shift of phonons (CS, QS), and phonon width (W) and the interference term (1). The QS, MP and OW contributions to I' are also derived by the matrix element method and the results are in agreement with those of Shukla and Muller (1979). In the high temperature limit, the contributions to;O from each of the above mentioned terms are of the type BT2 For numerical calculations suitable expressions are derived for the anharmonic contributions to ~ in terms of the third and fourth rank tensors obtained by the Ewald procedure. The numerical calculation of the contributions to;O from the OW, MP term and the QS have been done exactly and from the CS, Wand I terms only approximately in the partial and total Einstein approximations (PEA, TEA), using a first principle approach (Shukla and Taylor (1976)). The results obtained indicate that there is a strong pairwise cancellation between the: OW and MP terms, the QS and CS and the Wand I terms. The sum total of these contributions to;O for Na and K amounts to 4 to 11% and 2 to 7%, respectively, in the PEA while in the TEA they amount to 3 to 7% and 1 to 4%, respectively, in the temperature range.
Resumo:
The climate belongs to the class of non-equilibrium forced and dissipative systems, for which most results of quasi-equilibrium statistical mechanics, including the fluctuation-dissipation theorem, do not apply. In this paper we show for the first time how the Ruelle linear response theory, developed for studying rigorously the impact of perturbations on general observables of non-equilibrium statistical mechanical systems, can be applied with great success to analyze the climatic response to general forcings. The crucial value of the Ruelle theory lies in the fact that it allows to compute the response of the system in terms of expectation values of explicit and computable functions of the phase space averaged over the invariant measure of the unperturbed state. We choose as test bed a classical version of the Lorenz 96 model, which, in spite of its simplicity, has a well-recognized prototypical value as it is a spatially extended one-dimensional model and presents the basic ingredients, such as dissipation, advection and the presence of an external forcing, of the actual atmosphere. We recapitulate the main aspects of the general response theory and propose some new general results. We then analyze the frequency dependence of the response of both local and global observables to perturbations having localized as well as global spatial patterns. We derive analytically several properties of the corresponding susceptibilities, such as asymptotic behavior, validity of Kramers-Kronig relations, and sum rules, whose main ingredient is the causality principle. We show that all the coefficients of the leading asymptotic expansions as well as the integral constraints can be written as linear function of parameters that describe the unperturbed properties of the system, such as its average energy. Some newly obtained empirical closure equations for such parameters allow to define such properties as an explicit function of the unperturbed forcing parameter alone for a general class of chaotic Lorenz 96 models. We then verify the theoretical predictions from the outputs of the simulations up to a high degree of precision. The theory is used to explain differences in the response of local and global observables, to define the intensive properties of the system, which do not depend on the spatial resolution of the Lorenz 96 model, and to generalize the concept of climate sensitivity to all time scales. We also show how to reconstruct the linear Green function, which maps perturbations of general time patterns into changes in the expectation value of the considered observable for finite as well as infinite time. Finally, we propose a simple yet general methodology to study general Climate Change problems on virtually any time scale by resorting to only well selected simulations, and by taking full advantage of ensemble methods. The specific case of globally averaged surface temperature response to a general pattern of change of the CO2 concentration is discussed. We believe that the proposed approach may constitute a mathematically rigorous and practically very effective way to approach the problem of climate sensitivity, climate prediction, and climate change from a radically new perspective.
Resumo:
The budgets of seven halogenated gases (CFC-11, CFC-12, CFC-113, CFC-114, CFC-115, CCl4 and SF6) are studied by comparing measurements in polar firn air from two Arctic and three Antarctic sites, and simulation results of two numerical models: a 2-D atmospheric chemistry model and a 1-D firn diffusion model. The first one is used to calculate atmospheric concentrations from emission trends based on industrial inventories; the calculated concentration trends are used by the second one to produce depth concentration profiles in the firn. The 2-D atmospheric model is validated in the boundary layer by comparison with atmospheric station measurements, and vertically for CFC-12 by comparison with balloon and FTIR measurements. Firn air measurements provide constraints on historical atmospheric concentrations over the last century. Age distributions in the firn are discussed using a Green function approach. Finally, our results are used as input to a radiative model in order to evaluate the radiative forcing of our target gases. Multi-species and multi-site firn air studies allow to better constrain atmospheric trends. The low concentrations of all studied gases at the bottom of the firn, and their consistency with our model results confirm that their natural sources are small. Our results indicate that the emissions, sinks and trends of CFC-11, CFC-12, CFC-113, CFC-115 and SF6 are well constrained, whereas it is not the case for CFC-114 and CCl4. Significant emission-dependent changes in the lifetimes of halocarbons destroyed in the stratosphere were obtained. Those result from the time needed for their transport from the surface where they are emitted to the stratosphere where they are destroyed. Efforts should be made to update and reduce the large uncertainties on CFC lifetimes.
Resumo:
Using the formalism of the Ruelle response theory, we study how the invariant measure of an Axiom A dynamical system changes as a result of adding noise, and describe how the stochastic perturbation can be used to explore the properties of the underlying deterministic dynamics. We first find the expression for the change in the expectation value of a general observable when a white noise forcing is introduced in the system, both in the additive and in the multiplicative case. We also show that the difference between the expectation value of the power spectrum of an observable in the stochastically perturbed case and of the same observable in the unperturbed case is equal to the variance of the noise times the square of the modulus of the linear susceptibility describing the frequency-dependent response of the system to perturbations with the same spatial patterns as the considered stochastic forcing. This provides a conceptual bridge between the change in the fluctuation properties of the system due to the presence of noise and the response of the unperturbed system to deterministic forcings. Using Kramers-Kronig theory, it is then possible to derive the real and imaginary part of the susceptibility and thus deduce the Green function of the system for any desired observable. We then extend our results to rather general patterns of random forcing, from the case of several white noise forcings, to noise terms with memory, up to the case of a space-time random field. Explicit formulas are provided for each relevant case analysed. As a general result, we find, using an argument of positive-definiteness, that the power spectrum of the stochastically perturbed system is larger at all frequencies than the power spectrum of the unperturbed system. We provide an example of application of our results by considering the spatially extended chaotic Lorenz 96 model. These results clarify the property of stochastic stability of SRB measures in Axiom A flows, provide tools for analysing stochastic parameterisations and related closure ansatz to be implemented in modelling studies, and introduce new ways to study the response of a system to external perturbations. Taking into account the chaotic hypothesis, we expect that our results have practical relevance for a more general class of system than those belonging to Axiom A.
Resumo:
This work has as main objective the study of arrays of microstrip antennas with superconductor rectangular patch. The phases and the radiation patterns are analyzed. A study of the main theories is presented that explain the microscopic and macroscopic phenomena of superconductivity. The BCS, London equations and the Two Fluid Model, are theories used in the applications of superconductors, at the microstrip antennas and antennas arrays. Phase Arrangements will be analyzed in linear and planar configurations. The arrangement factors of these configurations are obtained, and the phase criteria and the spacing between the elements, are examined in order to minimize losses in the superconductor, compared with normal conductors. The new rectangular patch antenna, consist of a superconducting material, with the critical temperature of 233 K, whose formula is Tl5Ba4Ca2Cu9Oy, is analyzed by the method of the Transverse nTransmission Line (TTL), developed by H. C. C. Fernandes, applied in the Fourier Transform Domain (FTD). The TTL is a full-wave method, which has committed to obtaining the electromagnetic fields in terms of the transverse components of the structure. The inclusion of superconducting patch is made using the complex resistive boundary condition, using the impedance of the superconductor in the Dyadic Green function, in the structure. Results are obtained from the resonance frequency depending on the parameters of the antenna using superconducting material, radiation patterns in E-Plane and H -Plane, the phased antennas array in linear and planar configurations, for different values of phase angles and different spacing between the elements
Resumo:
Starting from the Generating functional for the Green Function (GF), constructed from the Lagrangian action in the Duffin-Kemmer-Petiau (DKP) theory (L-approach) we strictly prove that the physical matrix elements of the S-matrix in DKP and Klein-Gordon-Fock (KGF) theories coincide in cases of interacting spin O particles with external and quantized Maxwell and Yang-Mills fields and in case of external gravitational field (without or with torsion), For the proof we use the reduction formulas of Lehmann, Symanzik and Zimmermann (LSZ). We prove that many photons and Yang-Mills particles GF coincide in both theories too. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
In this work we show how to define the action of a scalar field such that the Robin boundary condition is implemented dynamically, i.e. as a consequence of the stationary action principle. We discuss the quantization of that system via functional integration. Using this formalism, we derive an expression for the Casimir energy of a massless scalar field under Robin boundary conditions on a pair of parallel plates, characterized by constants c(1) and c(2). Some special cases are discussed; in particular, we show that for some values of cl and c(2) the Casimir energy as a function of the distance between the plates presents a minimum. We also discuss the renormalization at one-loop order of the two-point Green function in the philambda(4) theory subject to the Robin boundary condition on a plate.