981 resultados para glacial geomorphology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

El volcán Hecates Tholus (32.18°N, 150.28ºE; cuadrante MC-7), de unos 180 km de diámetro y 5.300 metros de altura, es el único edificio de la provincia volcánica de Elysium, en las Tierras Bajas de Marte, en el que se han descrito rasgos geomorfológicos que podrían estar causados por procesos glaciares. Además, distintos autores relacionan la red radial de canales que surcan las laderas del volcán como causadas por la fusión de un antiguo casquete glaciar en la cima del edificio, siendo éste un ejemplo más de las intensas interacciones magma-agua en esta región del planeta, cercana al antiguo océano marciano y que dieron lugar a fenómenos muy interesantes, como los terrenos caóticos de Galaxias Chaos, a pocos kilómetros del volcán. Una característica muy particular de este edificio volcánico es la presencia de dos depresiones anidadas en la base de la ladera Noroeste, de 20 y 60 km de diámetro. La menor de ellas (Depresión A), situada a mayor altitud, ha sido interpretada por algunos autores como causada por una erupción lateral del volcán hace unos 350 Ma. Sin embargo, la de mayor diámetro y situada a menor altitud (Depresión B), no tiene un origen claro, aunque se han discutido distintas hipótesis. En cualquier caso, es especialmente en el interior de estas depresiones donde se han encontrado los rasgos geomorfológicos que podrían estar causados por actividad glacial, como posibles cordones morrénicos y depósitos de till...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we present a map of the glacial geomorphology of the Altai andWestern Sayan Mountains, covering an area of almost 600,000 km2. Although numerous studies provide evidence for restricted Pleistocene glaciations in this area, others have hypothesized the past existence of an extensive ice sheet. To provide a framework for accurate glacial reconstructions of the Altai and Western Sayan Mountains, we present a map at a scale of 1:1,000,000 based on a mapping from 30 m resolution ASTER DEM and 15 m/30 mresolution Landsat ETM+ satellite imagery. Four landform classes have been mapped: marginal moraines, glacial lineations, hummocky terrain, and glacial valleys. Our mapping reveals an abundance of glacial erosional and depositional landforms. The distribution of these glacial landforms indicates that the Altai and Western Sayan Mountains have experienced predominantly alpine-style glaciations, with some small ice caps centred on the higher mountain peaks. Large marginal moraine complexes mark glacial advances in intermontane basins. By tracing the outer limits of present-day glaciers, glacial valleys, and moraines, we estimate that the past glacier coverage have totalled to 65,000 km2 (10.9% of the mapped area), whereas present-day glacier coverage totals only 1300 km2 (0.2% of the mapped area). This demonstrates the usefulness of remote sensing techniques for mapping the glacial geomorphology in remote mountain areas and for quantifying the past glacier dimensions. The glacial geomorphological map presented here will be used for further detailed reconstructions of the paleoglaciology and paleoclimate of the region.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Victoria Island lies at the north-western extremity of the region covered by the vast North American Laurentide Ice Sheet (LIS) in the Canadian Arctic Archipelago. This area is significant because it linked the interior of the LIS to the Arctic Ocean, probably via a number of ice streams. Victoria Island, however, exhibits a remarkably complex glacial landscape, with several successive generations of ice flow indicators superimposed on top of each other and often at abrupt (90 degrees) angles. This complexity represents a major challenge to those attempting to produce a detailed reconstruction of the glacial history of the region. This paper presents a map of the glacial geomorphology of Victoria Island. The map is based on analysis of Landsat Enhanced Thematic Plus (ETM+) satellite imagery and contains over 58,000 individual glacial features which include: glacial lineations, moraines (terminal, lateral, subglacial shear margin), hummocky moraine, ribbed moraine, eskers, glaciofluvial deposits, large meltwater channels, and raised shorelines. The glacial features reveal marked changes in ice flow direction and vigour over time. Moreover, the glacial geomorphology indicates a non-steady withdrawal of ice during deglaciation, with rapidly flowing ice streams focussed into the inter-island troughs and several successively younger flow patterns superimposed on older ones. It is hoped that detailed analysis of this map will lead to an improved reconstruction of the glacial history of this area which will provide other important insights, for example, with respect to the interactions between ice streaming, deglaciation and Arctic Ocean meltwater events.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Yari-Hotaka Mountain Range is one of the most famous formerly-glaciated areas of Japan. Many glacial landforms remain in three neighbouring U-shaped valleys, named Yarisawa, Yokoo and Migimata. Moraines and outwash terraces can be classified into four groups according to their location and to the amount of glacial quartz grains contained in the deposits. A glaciation is proved for other parts of the Northern Japanese Alps before 100 000 years B.P., but not for the Yari-Hotaka Mountain Range, because the corresponding glacial landforms cannot be found here. The oldest known Ichinomata stage before and after 60 000 years B.P. corresponds to the Yokoo glacial which is proved wirhin the whole Japanese Alps. The three younger stages, Babadaira stage (before 30 000 years B.P.), Yarisawa stage I (about 30000 years B.P.) and Yarisawa stage II (about 15000 years B.P.), belong to the Karasawa glacial. About 10 000 years B.P. the glaciers melted away. At all times the relief-influence was especially important for Ihe mass-balances of Japanese glaciers. Wind-drifted snow from the west-exposed windward slopes to the slopes in eastern (lee) exposition, and a voluminous snow accumulation by avalanches from the high rocky walls onto the glacier surfaces beneath, caused very low situated glaciers as well as low equilibrium-lines. In most cases the snow-lines were situated 100 m or more above the equilibrium-lines. During the Ichinomata stage the snow-line reached an altitude of 2400-2450 m. It rose about 100 m to the Babadaira stage, 300 m to Yarisawa stage I and about 450 m to Yarisawa stage II. At present the snow-line is situated above the Northern Japanese Alps at over 4000 m. Therefore only perennial snow-patches exist. If the snow-line would go down by a few hundred meters, this region would be highly interesting Ifor studies on the beginning of mountain glaciation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ice-marginal moraines are often used to reconstruct the dimensions of former ice masses, which are then used as proxies for palaeoclimate. This approach relies on the assumption that the distribution of moraines in the modern landscape is an accurate reflection of former ice margin positions during climatically controlled periods of ice margin stability. However, the validity of this assumption is open to question, as a number of additional, nonclimatic factors are known to influence moraine distribution. This review considers the role played by topography in this process, with specific focus on moraine formation, preservation, and ease of identification (topoclimatic controls are not considered). Published literature indicates that the importance of topography in regulating moraine distribution varies spatially, temporally, and as a function of the ice mass type responsible for moraine deposition. In particular, in the case of ice sheets and ice caps ( > 1000 km2), one potentially important topographic control on where in a landscape moraines are deposited is erosional feedback, whereby subglacial erosion causes ice masses to become less extensive over successive glacial cycles. For the marine-terminating outlets of such ice masses, fjord geometry also exerts a strong control on where moraines are deposited, promoting their deposition in proximity to valley narrowings, bends, bifurcations, where basins are shallow, and/or in the vicinity of topographic bumps. Moraines formed at the margins of ice sheets and ice caps are likely to be large and readily identifiable in the modern landscape. In the case of icefields and valley glaciers (10–1000 km2), erosional feedback may well play some role in regulating where moraines are deposited, but other factors, including variations in accumulation area topography and the propensity for moraines to form at topographic pinning points, are also likely to be important. This is particularly relevant where land-terminating glaciers extend into piedmont zones (unconfined plains, adjacent to mountain ranges) where large and readily identifiable moraines can be deposited. In the case of cirque glaciers (< 10 km2), erosional feedback is less important, but factors such as topographic controls on the accumulation of redistributed snow and ice and the availability of surface debris, regulate glacier dimensions and thereby determine where moraines are deposited. In such cases, moraines are likely to be small and particularly susceptible to post-depositional modification, sometimes making them difficult to identify in the modern landscape. Based on this review, we suggest that, despite often being difficult to identify, quantify, and mitigate, topographic controls on moraine distribution should be explicitly considered when reconstructing the dimensions of palaeoglaciers and that moraines should be judiciously chosen before being used as indirect proxies for palaeoclimate (i.e., palaeoclimatic inferences should only be drawn from moraines when topographic controls on moraine distribution are considered insignificant).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rapidly-flowing sectors of an ice sheet (ice streams) can play ail important role in abrupt climate change through tile delivery of icebergs and meltwater and tile Subsequent disruption of ocean thermohaline circulation (e.g., the North Atlantic's Heinrich events). Recently, several cores have been raised from the Arctic Ocean which document the existence of massive ice export events during tile Late Pleistocene and whose provenance has been linked to Source regions in the Canadian Arctic Archipelago. In this paper, satellite imagery is used to map glacial geomorphology in the vicinity of Victoria Island, Banks Island and Prince of Wales Island (Canadian Arctic) in order to reconstruct ice flow patterns in the highly complex glacial landscape. A total of 88 discrete flow-sets are mapped and of these, 13 exhibit the characteristic geomorphology of palaeo-ice streams (i.e., parallel patterns of large, highly elongated mega-scale glacial lineations forming a convergent flow pattern with abrupt lateral margins). Previous studies by other workers and cross-cutting relationships indicate that the majority of these ice streams are relatively young and operated during or immediately prior to deglaciation. Our new mapping, however, documents a large (> 700 km long; 110 km wide) and relatively old ice stream imprint centred in M'Clintock Channel and converging into Viscount Melville Sound. A trough mouth fan located on the continental shelf Suggests that it extended along M'Clure Strait and was grounded at tile shelf edge. The location of the M'Clure Strait Ice Stream exactly matches the Source area of 4 (possibly 5) major ice export events recorded in core PS 1230 raised from Fram Strait, the major ice exit for the Arctic Ocean. These ice export events occur at similar to 12.9, similar to 15.6, similar to 22 and 29.8 ka (C-14 yr BP) and we argue that they record vigorous episodes of activity of the M'Clure Strait Ice Stream. The timing of these events is remarkably similar to the North Atlantic's Heinrich events and we take this as evidence that the M'Clure Strait Ice Stream was also activated around the same time. This may hold important implications for tile cause of the North Atlantic's Heinrich events and hints at tile possibility of a pall-ice sheet response. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The beds of active ice streams in Greenland and Antarctica are largely inaccessible, hindering a full understanding of the processes that initiate, sustain and inhibit fast ice flow in ice sheets. Detailed mapping of the glacial geomorphology of palaeo-ice stream tracks is, therefore, a valuable tool for exploring the basal processes that control their behaviour. In this paper we present a map that shows detailed glacial geomorphology from a part of the Dubawnt Lake Palaeo-Ice Stream bed on the north-western Canadian Shield (Northwest Territories), which operated at the end of the last glacial cycle. The map (centred on 63 degrees 55 '' 42'N, 102 degrees 29 '' 11'W, approximate scale 1:90,000) was compiled from digital Landsat Enhanced Thematic Mapper Plus satellite imagery and digital and hard-copy stereo-aerial photographs. The ice stream bed is dominated by parallel mega-scale glacial lineations (MGSL), whose lengths exceed several kilometres but the map also reveals that they have, in places, been superimposed with transverse ridges known as ribbed moraines. The ribbed moraines lie on top of the MSGL and appear to have segmented the individual lineaments. This indicates that formation of the ribbed moraines post-date the formation of the MSGL. The presence of ribbed moraine in the onset zone of another palaeo-ice stream has been linked to oscillations between cold and warm-based ice and/or a patchwork of cold-based areas which led to acceleration and deceleration of ice velocity. Our hypothesis is that the ribbed moraines on the Dubawnt Lake Ice Stream bed are a manifestation of the process that led to ice stream shut-down and may be associated with the process of basal freeze-on. The precise formation of ribbed moraines, however, remains open to debate and field observation of their structure will provide valuable data for formal testing of models of their formation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High-resolution swath-bathymetry data from inner Kongsfjorden, Svalbard, reveal characteristic landform assemblages formed during and after surges of tidewater glaciers, and provide new insights into the dynamics of surging glaciers. Glacier front oscillations and overriding related to surge activity lead to the formation of overridden moraines, glacial lineations of two types, terminal moraines, associated debris lobes and De Geer moraines. In contrast to submarine landform assemblages from other Svalbard fjords, the occurrence of two kinds of glacial lineations and the presence of De Geer moraines suggest variability in the landforms produced by surge-type tidewater glaciers. All the landforms in inner Kongsfjorden were deposited during the last c. 150 years. Lithological and acoustic data from the innermost fjord reveal that suspension settling from meltwater plumes as well as ice rafting are dominant sedimentary processes in the fjord, leading to the deposition of stratified glacimarine muds with variable numbers of clasts. Reworking of sediments by glacier surging results in the deposition of sediment lobes containing massive glacimarine muds. Two sediment cores reveal minimum sediment accumulation rates related to the Kongsvegen surge from 1948; these were 30 cm a-1 approximately 2.5 km beyond the glacier front shortly after surge termination, and rapidly dropped to an average rate of 1.8 cm a-1 in ∼1950, during glacier retreat.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peak altitudes, hypsometry, geology, and former equilibrium-line altitudes (ELAs) are analyzed across the Sredinny Mountains (Kamchatka). Overall, evidence is found to suggest that the glacial buzzsaw has operated to shape the topography of this mountain range, but the strength of this signature is not spatially uniform. In the southern sector of the mountains, we see evidence that an efficient glacial buzzsaw has acted to impose constraints upon topography, limiting peak altitudes, and concentrating land-surface area (hypsometric maxima) close to palaeo-ELAs. By contrast, in the northern sector of the mountains, a number of peaks rise high above the surrounding topography, and land-surface area is concentrated well below palaeo-ELAs. This deviation from a classic ‘buzzsaw signature’, in the northern sector of the mountains, is considered to reflect volcanic construction during the Quaternary, resulting in a series of high altitude peaks, combined with the action of dynamic glaciers, acting to skew basin topography toward low altitudes, well below palaeo-ELAs. These glaciers are considered to have been particularly dynamic because of their off-shore termination, their proximity to moisture-bearing air masses from the North Pacific, and because accumulation was supplemented by snow and ice avalanching from local high altitude peaks. Overall, the data suggest that the buzzsaw remains a valid mechanism to generally explain landscape evolution in mountain regions, but its signature is significantly weakened in mountain basins that experience both volcanic construction and climatic conditions favouring dynamic glaciation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In nature, several types of landforms have simple shapes: as they evolve they tend to take on an ideal, simple geometric form such as a cone, an ellipsoid or a paraboloid. Volcanic landforms are possibly the best examples of this ?ideal? geometry, since they develop as regular surface features due to the point-like (circular) or fissure-like (linear) manifestation of volcanic activity. In this paper, we present a geomorphometric method of fitting the ?ideal? surface onto the real surface of regular-shaped volcanoes through a number of case studies (Mt. Mayon, Mt. Somma, Mt. Semeru, and Mt. Cameroon). Volcanoes with circular, as well as elliptical, symmetry are addressed. For the best surface fit, we use the minimization library MINUIT which is made freely available by the CERN (European Organization for Nuclear Research). This library enables us to handle all the available surface data (every point of the digital elevation model) in a one-step, half-automated way regardless of the size of the dataset, and to consider simultaneously all the relevant parameters of the selected problem, such as the position of the center of the edifice, apex height, and cone slope, thanks to the highly performing adopted procedure. Fitting the geometric surface, along with calculating the related error, demonstrates the twofold advantage of the method. Firstly, we can determine quantitatively to what extent a given volcanic landform is regular, i.e. how much it follows an expected regular shape. Deviations from the ideal shape due to degradation (e.g. sector collapse and normal erosion) can be used in erosion rate calculations. Secondly, if we have a degraded volcanic landform, whose geometry is not clear, this method of surface fitting reconstructs the original shape with the maximum precision. Obviously, in addition to volcanic landforms, this method is also capable of constraining the shapes of other regular surface features such as aeolian, glacial or periglacial landforms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Landforms within the Skagit Valley record a complex history of land evolution from Late Pleistocene to the present. Late Pleistocene glacial deposits and subsequent incision by the Skagit River formed the Burpee Hills terrace. The Burpee Hills comprises an approximately 205-m-thick sequence of sediments, including glacio-lacustrine silts and clays, overlain by sandy advance outwash and capped by coarse till, creating a sediment-mantled landscape where mass wasting occurs in the form of debris flows and deep-seated landslides (Heller, 1980; Skagit County, 2014). Landslide probability and location are necessary metrics for informing citizens and policy makers of the frequency of natural hazards. Remote geomorphometric analysis of the site area using airborne LiDAR combined with field investigation provide the information to determine relative ages of landslide deposits, to classify geologic units involved, and to interpret the recent hillslope evolution. Thirty-two percent of the 28-km2 Burpee Hills landform has been mapped as landslide deposits. Eighty-five percent of the south-facing slope is mapped as landslide deposits. The mapped landslides occur predominantly within the advance outwash deposits (Qgav), this glacial unit has a slope angle ranging from 27 to 36 degrees. Quantifying surface roughness as a function of standard deviation of slope provides a relative age of landslide deposits, laying the groundwork for frequency analysis of landslides on the slopes of the Burpee Hills. The south-facing slopes are predominately affected by deep-seated landslides as a result of Skagit River erosion patterns within the floodplain. The slopes eroded at the toe by the Skagit River have the highest roughness coefficients, suggesting that areas with more frequent disturbance at the toe are more prone to sliding or remobilization. Future work including radiocarbon dating and hydrologic-cycle investigations will provide a more accurate timeline of the Burpee Hills hillslope evolution, and better information for emergency management and planners in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The degree to which Southern Hemisphere climatic changes during the end of the last glacial period and early Holocene (30-8 ka) were influenced or initiated by events occurring in the high latitudes of the Northern Hemisphere is a complex issue. There is conflicting evidence for the degree of hemispheric 'teleconnection' and an unresolved debate as to the principle forcing mechanism(s). The available hypotheses are difficult to test robustly, however, because the few detailed palaeoclimatic records in the Southern Hemisphere are widely dispersed and lack duplication. Here we present climatic and environmental reconstructions from across Australia, a key region of the Southern Hemisphere because of the range of environments it covers and the potentially important role regional atmospheric and oceanic controls play in global climate change. We identify a general scheme of events for the end of the last glacial period and early Holocene but a detailed reconstruction proved problematic. Significant progress in climate quantification and geochronological control is now urgently required to robustly investigate change through this period. Copyright (c) 2006 John Wiley & Sons, Ltd.