955 resultados para genomic instability
Resumo:
Germline mutations in BRCA1 predispose carriers to a high incidence of breast and ovarian cancers. BRCA1 functions to maintain genomic stability through critical roles in DNA repair, cell cycle arrest and transcriptional control. A major question has been why BRCA1 loss or mutation leads to tumors mainly in estrogen-regulated tissues, given that BRCA1 has essential functions in all cell types. Here we report that estrogen and estrogen metabolites can cause DNA double strand breaks (DSB) in estrogen receptor-α negative breast cells and that BRCA1 is required to repair these DSBs to prevent metabolite-induced genomic instability. We found that BRCA1 also regulates estrogen metabolism and metabolite-mediated DNA damage by repressing the transcription of estrogen-metabolising enzymes, such as CYP1A1, in breast cells. Lastly, we used a knock-in human cell model with a heterozygous BRCA1 pathogenic mutation to show how BRCA1 haploinsufficiency affects these processes. Our findings provide pivotal new insights into why BRCA1 mutation drives the formation of tumours in estrogen-regulated tissues, despite the general role of BRCA1 in DNA repair in all cell types.
Resumo:
Thymine DNA glycosylase (TDG) functions in base excision repair, a DNA repair pathway that acts in a lesion-specific manner to correct individual damaged or altered bases. TDG preferentially catalyzes the removal of thymine and uracil paired with guanine, and is also active on 5-fluorouracil (5-FU) paired with adenine or guanine. The rs4135113 single nucleotide polymorphism (SNP) of TDG is found in 10% of the global population. This coding SNP results in the alteration of Gly199 to Ser. Gly199 is part of a loop responsible for stabilizing the flipped abasic nucleotide in the active site pocket. Biochemical analyses indicate that G199S exhibits tighter binding to both its substrate and abasic product. The persistent accumulation of abasic sites in cells expressing G199S leads to the induction of double-strand breaks (DSBs). Cells expressing the G199S variant also activate a DNA damage response. When expressed in cells, G199S induces genomic instability and cellular transformation. Together, these results suggest that individuals harboring the G199S variant may have increased risk for developing cancer.
Resumo:
Environmental (222)radon exposure is a human health concern, and many studies demonstrate that very low doses of high LET alpha-particle irradiation initiate deleterious genetic consequences in both radiated and non-irradiated bystander cells. One consequence, radiation-induced genomic instability (RIGI), is a hallmark of tumorigenesis and is often assessed by measuring delayed chromosomal aberrations We utilised a technique that facilitates transient immobilization of primary lymphocytes for targeted microbeam irradiation and have reported that environmentally relevant doses, e.g. a single He-3(2+) particle traversal to a single cell, are sufficient to Induce RIGI Herein we sought to determine differences in radiation response in lymphocytes isolated from five healthy male donors Primary lymphocytes were irradiated with a single particle per cell nucleus. We found evidence for inter-individual variation in radiation response (Rid, measured as delayed chromosome aberrations) Although this was not highly significant, it was possibly masked by high levels of intra-individual variation While there are many studies showing a link between genetic predisposition and RIGI, there are few studies linking genetic background with bystander effects in normal human lymphocytes In an attempt to investigate inter-individual variation in the induction of bystander effects, primary lymphocytes were irradiated with a single particle under conditions where fractions of the population were traversed We showed a marked genotype-dependent bystander response in one donor after exposure to 15% of the population The findings may also be regarded as a radiation-induced genotype-dependent bystander effect triggering an instability phenotype (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Evidence has accumulated that radiation induces a transmissible persistent destabilization of the genome, which mag. result in effects arising in the progeny of irradiated but surviving cells. An enhanced death rate among the progeny of cells surviving irradiation persists for many generations in the form of a reduced plating efficiency. Such delayed reproductive death is correlated with an increased occurrence of micronuclei. Since it has been suggested that radiation-induced chromosomal instability might depend on the radiation quality, we investigated the effects of alpha particles of different LET by looking at the frequency of delayed micronuclei in Chinese hamster V79 cells after cytochalasin-induced block of cell division, A dose-dependent increase in the frequency of micronuclei was found in cells assayed 1 week postirradiation or later. Also, there was a persistent increase in the frequency of dicentrics in surviving irradiated cells, Moreover, we found an increased micronucleus frequency in all of the 30 clones isolated from individual cells which had been irradiated with doses equivalent to either one, two or three alpha-particle traversals per cell nucleus, We conclude that the target for genomic instability in Chinese hamster cells must be larger than the cell nucleus. (C) 1997 by Radiation Research Society
Resumo:
Recent evidence suggests that genomic instability, which is an important step in carcinogenesis, may be important in the effectiveness of radiation as a carcinogen, particularly for high-LET radiations. Understanding the biological effects underpinning the risks associated with low doses of densely ionizing radiations is complicated in experimental systems by the Poisson distribution of particles that ran be delivered, In this study, we report an approach to determine the effect of the lowest possible cellular radiation dose of densely ionizing at particles, that of a single particle traversal. Using microbeam technology and an approach for immobilizing human T-lymphocytes, we have measured the effects of single alpha -particle traversals on the surviving progeny of cells. A significant increase in the proportion of aberrant cells is observed 12-13 population doublings after exposure, with a high level of chromatid-type aberrations, indicative of an instability phenotype, These data suggest that instability may be important in situations where even a single particle traverses human cells. (C) 2001 by Radiation Research Society.
Resumo:
Exposure to ionizing radiation can increase the risk of cancer, which is often characterized by genomic instability. In environmental exposures to high-LET radiation (e.g. Ra-222), it is unlikely that many cells will be traversed or that any cell will be traversed by more than one alpha particle, resulting in an in vivo bystander situation, potentially involving inflammation. Here primary human lymphocytes were irradiated with precise numbers of He-3(2+) ions delivered to defined cell population fractions, to as low as a single cell being traversed, resembling in vivo conditions. Also, we assessed the contribution to genomic instability of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFA). Genomic instability was significantly elevated in irradiated groups ( greater than or equal totwofold over controls) and was comparable whether cells were traversed by one or two He-3(2+) ions. Interestingly, substantial heterogeneity in genomic instability between experiments was observed when only one cell was traversed. Genomic instability was significantly reduced (60%) in cultures in which all cells were irradiated in the presence of TNFA antibody, but not when fractions were irradiated under the same conditions, suggesting that TNFA may have a role in the initiation of genomic instability in irradiated cells but not bystander cells. These results have implications for low-dose exposure risks and cancer. (C) 2005 by Radiation Research Society.
Resumo:
Germline mutations in BRCA1 predispose carriers to a high incidence of breast and ovarian cancers. BRCA1 functions to maintain genomic stability through critical roles in DNA repair, cell-cycle arrest, and transcriptional control. A major question has been why BRCA1 loss or mutation leads to tumors mainly in estrogen-regulated tissues, given that BRCA1 has essential functions in all cell types. Here, we report that estrogen and estrogen metabolites can cause DNA double-strand breaks (DSB) in estrogen receptora- negative breast cells and that BRCA1 is required to repair these DSBs to prevent metabolite-induced genomic instability.We found that BRCA1 also regulates estrogen metabolism and metabolite-mediated DNA damage by repressing the transcription of estrogen-metabolizing enzymes, such as CYP1A1, in breast cells. Finally, we used a knock-in human cell model with a heterozygous BRCA1 pathogenic mutation to show how BRCA1 haploinsufficiency affects these processes. Our findings provide pivotal new insights into why BRCA1 mutation drives the formation of tumors in estrogen-regulated tissues, despite the general role of BRCA1 in DNA repair in all cell types. © 2014 American Association for Cancer Research.
Resumo:
4-Nitroquinotine 1-oxide (4NQO)-induced rat tongue carcinogenesis is a useful model for studying oral squamous cell carcinoma. The aim of this study was to investigate the level of DNA damage induced by 4NQO in oral mucosa cells by the single cell get (comet) assay. Mate Wistar rats were distributed into three groups of 10 animals each and treated with 50 ppm 4NQO solution by drinking water for 4, 12 or 20 weeks. Ten animals were used as negative control. Statistically significant increase of DNA damage was observed in non-neoplastic oral cells at four weeks of 4NQO administration when compared with control (P < 0.05). The level of DNA damage was directly associated with the severity of histological changes. The results suggest that histologically normal tissue is able to harbor genetically unstable cells contributing to the initiation of oral carcinogenesis. Genomic instability appears to be associated with the risk and progression of oral cancer. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)