1000 resultados para gallery method


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A microwave dielectric ceramic resonator based on BaCe2Ti5O15 and Ba5Nb4O15 have been prepared by conventional solid state ceramic route. The dielectric resonators (DRs) have high dielectric constant 32 and 40 for BaCe2Ti5O15 and Ba5Nb4O15, respectively. The whispering gallery mode (WGM) technique was employed for the accurate determination of the dielectric properties in the microwave frequency range. The BaCe2Ti5O15 and Ba5Nb4O15 have quality factors (Q X F) of 30,600 and 53,000 respectively. The quality factor is found to depend on the azimuthal mode numbers. The temperature coefficient of resonant frequency (Tr) of BaCe2Ti5O15 and Ba5Nb4O15 have been measured accurately using different resonant modes and are + 41 and + 78 ppm/K, respectively

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper discusses the four most destructive shrimp pathogens, such as MBV, the monodon baculovisrus, IHHNV, the infectious hypodermal and hematopoietic necrosis virus, Vibrio harveyi, the luminous bacteria, and WSBV, the white spot syndrome-associated baculovirus. The effects, detection method and treatment for the four pathogens were also briefly discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mode frequencies and field distributions of whispering-gallery (WG)-like modes of square resonators are obtained analytically, which agree very well with the numerical results calculated by the FDTD technique and Pade approximation method. In the analysis, a perfect electric wall for the transverse magnetic mode or perfect magnetic wall for the transverse electric mode is assumed at the diagonals of the square resonators, which not only provides the transverse mode confinement, but also requires the longitudinal mode number to be an even integer. The WG-like modes of square resonators are nondegenerate modes with high-quality factors, which make them suitable for fabricating single-mode low-threshold semiconductor microcavity lasers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, the evanescent field sensing techniques of tapered optical nanofibres and microspherical resonators are investigated. This includes evanescent field spectroscopy of a silica nanofibre in a rubidium vapour; thermo-optical tuning of Er:Yb co-doped phosphate glass microspheres; optomechanical properties of microspherical pendulums; and the fabrication and characterisation of borosilicate microbubble resonators. Doppler-broadened and sub-Doppler absorption spectroscopic techniques are performed around the D2 transition (780.24 nm) of rubidium using the evanescent field produced at the waist of a tapered nanofibre with input probe powers as low as 55 nW. Doppler-broadened Zeeman shifts and a preliminary dichroic atomic vapour laser lock (DAVLL) line shape are also observed via the nanofibre waist with an applied magnetic field of 60 G. This device has the potential for laser frequency stabilisation while also studying the effects of atom-surface interactions. A non-invasive thermo-optical tuning technique of Er:Yb co-doped microspheres to specific arbitrary wavelengths is demonstrated particularly to 1294 nm and the 5S1/2F=3 to 5P3/2Fʹ=4 laser cooling transition of 85Rb. Reversible tuning ranges of up to 474 GHz and on resonance cavity timescales on the order of 100 s are reported. This procedure has prospective applications for sensing a variety of atomic or molecular species in a cavity quantum electrodynamics (QED) experiments. The mechanical characteristics of a silica microsphere pendulum with a relatively low spring constant of 10-4 Nm-1 are explored. A novel method of frequency sweeping the motion of the pendulum to determine its natural resonance frequencies while overriding its sensitivity to environmental noise is proposed. An estimated force of 0.25 N is required to actuate the pendulum by a displacement of (1-2) μm. It is suggested that this is of sufficient magnitude to be experienced between two evanescently coupled microspheres (photonic molecule) and enable spatial trapping of the micropendulum. Finally, single-input borosilicate microbubble resonators with diameters <100 μm are fabricated using a CO2 laser. Optical whispering gallery mode spectra are observed via evanescent coupling with a tapered fibre. A red-shift of (4-22) GHz of the resonance modes is detected when the hollow cavity was filled with nano-filtered water. A polarisation conversion effect, with an efficiency of 10%, is observed when the diameter of the coupling tapered fibre waist is varied. This effect is also achieved by simply varying the polarisation of the input light in the tapered fibre where the efficiency is optimised to 92%. Thus, the microbubble device acts as a reversible band-pass to band-stop optical filter for cavity-QED, integrated solid-state and semiconductor circuit applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis has been done in ROM (Royal Ontario Museum) located in Toronto Canada. It focuses on learning in two parts of the museum. It tries to find out how much each part is effective in terms of learning. Studies have been done in the Digital gallery, which has been equipped with digital video projector and workstation that allows visitors to interact with the collections in 2 or 3 dimensional spaces while they are watching the presenting film. The rest of the study was in Hands-on laboratory, which allows students to examine artifacts and discuss their findings .The method was used in this research is Concept mapping .In Digital gallery, 24 schools surveys in the form of pre-post- test by help of the concept mapping method has been done. In Hands-on laboratory, 12 schools have been studied by using the combination of interviewing and written pre post-test of concept mapping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fleck and Johnson (Int. J. Mech. Sci. 29 (1987) 507) and Fleck et al. (Proc. Inst. Mech. Eng. 206 (1992) 119) have developed foil rolling models which allow for large deformations in the roll profile, including the possibility that the rolls flatten completely. However, these models require computationally expensive iterative solution techniques. A new approach to the approximate solution of the Fleck et al. (1992) Influence Function Model has been developed using both analytic and approximation techniques. The numerical difficulties arising from solving an integral equation in the flattened region have been reduced by applying an Inverse Hilbert Transform to get an analytic expression for the pressure. The method described in this paper is applicable to cases where there is or there is not a flat region.

Relevância:

20.00% 20.00%

Publicador: