932 resultados para galaxies: Magellanic Clouds
Resumo:
The determination of accurate chemical abundances of planetary nebulae (PN) in different galaxies allows us to obtain important constraints on chemical evolution models for these systems. We have a long-term program to derive abundances in the galaxies of the Local Group, particularly the Large and Small Magellanic Clouds. In this work, we present our new results on these objects and discuss their implications in view of recent abundance determinations in the literature. In particular, we obtain distance-independent correlations involving He, N, O, Ne, S, and Ar, and compare the results with data from our own Galaxy and other galaxies in the Local Group. As a result of our observational program, we have a large database of PN in the Galaxy and the Magellanic Clouds, so that we can obtain reliable constraints on the nucleosynthesis processes in the progenitor stars in galaxies of different metallicities.
Resumo:
This Ph.D. Thesis has been carried out in the framework of a long-term and large project devoted to describe the main photometric, chemical, evolutionary and integrated properties of a representative sample of Large and Small Magellanic Cloud (LMC and SMC respectively) clusters. The globular clusters system of these two Irregular galaxies provides a rich resource for investigating stellar and chemical evolution and to obtain a detailed view of the star formation history and chemical enrichment of the Clouds. The results discussed here are based on the analysis of high-resolution photometric and spectroscopic datasets obtained by using the last generation of imagers and spectrographs. The principal aims of this project are summarized as follows: • The study of the AGB and RGB sequences in a sample of MC clusters, through the analysis of a wide near-infrared photometric database, including 33 Magellanic globulars obtained in three observing runs with the near-infrared camera SOFI@NTT (ESO, La Silla). • The study of the chemical properties of a sample of MCs clusters, by using optical and near-infrared high-resolution spectra. 3 observing runs have been secured to our group to observe 9 LMC clusters (with ages between 100 Myr and 13 Gyr) with the optical high-resolution spectrograph FLAMES@VLT (ESO, Paranal) and 4 very young (<30 Myr) clusters (3 in the LMC and 1 in the SMC) with the near-infrared high-resolution spectrograph CRIRES@VLT. • The study of the photometric properties of the main evolutive sequences in optical Color- Magnitude Diagrams (CMD) obtained by using HST archive data, with the final aim of dating several clusters via the comparison between the observed CMDs and theoretical isochrones. The determination of the age of a stellar population requires an accurate measure of the Main Sequence (MS) Turn-Off (TO) luminosity and the knowledge of the distance modulus, reddening and overall metallicity. For this purpose, we limited the study of the age just to the clusters already observed with high-resolution spectroscopy, in order to date only clusters with accurate estimates of the overall metallicity.
Resumo:
This PhD project is aimed at investigating the chemical composition of the stellar populations in the closest satellites of the Milky Way (MW), namely the Large and Small Magellanic Cloud (LMC and SMC, respectively) and the remnant of the Sagittarius (Sgr) dwarf spheroidal galaxy. Their proximity allows us to resolve their individual stars both with spectroscopy and photometry, studying in detail the characteristics of their stellar populations. All these objects are interacting galaxies: LMC and SMC are in an early stage of a minor merger event, and Sgr is being disrupted by the tidal field of the MW. There is a plenty of literature regarding the chemical composition of these systems, however, the extension of these galaxies prevents a complete and homogeneous analysis. Therefore, we homogeneously analysed stellar spectra belonging to MW and its satellites galaxies and we derived their chemical compositions. We highlighted the importance of a homogeneous analysis in the comparison among different galaxies or different samples, to avoid systematics due to different methods or physical assumptions.
Resumo:
Aims. We study the optical and near-infrared colour excesses produced by circumstellar emission in a sample of Be/X-ray binaries. Our main goals are exploring whether previously published relations, valid for isolated Be stars, are applicable to Be/X-ray binaries and computing the distance to these systems after correcting for the effects of the circumstellar contamination. Methods. Simultaneous UBVRI photometry and spectra in the 3500−7000 Å spectral range were obtained for 11 optical counterparts to Be/X-ray binaries in the LMC, 5 in the SMC and 12 in the Milky Way. As a measure of the amount of circumstellar emission we used the Hα equivalent width corrected for photospheric absorption. Results. We find a linear relationship between the strength of the Hα emission line and the component of E(B − V) originating from the circumstellar disk. This relationship is valid for stars with emission lines weaker than EW ≈ −15 Å. Beyond this point, the circumstellar contribution to E(B − V) saturates at a value ≈0.17 mag. A similar relationship is found for the (V − I) near infrared colour excess, albeit with a steeper slope and saturation level. The circumstellar excess in (B − V) is found to be about five times higher for Be/X-ray binaries than for isolated Be stars with the same equivalent width EW(Hα), implying significant differences in the physical properties of their circumstellar envelopes. The distance to Be/X-ray binaries (with non-shell Be star companions) can only be correctly estimated by taking into account the excess emission in the V band produced by free-free and free-bound transitions in the circumstellar envelope. We provide a simple method to determine the distances that includes this effect.
Resumo:
Aims. In this study we conduct a pilot program aimed at the red supergiant population of the Magellanic Clouds. We intend to extend the current known sample to the unexplored low end of the brightness distribution of these stars, building a more representative dataset with which to extrapolate their behaviour to other Galactic and extra-galactic environments. Methods. We select candidates using only near infrared photometry, and with medium resolution multi-object spectroscopy, we perform spectral classification and derive their line-of-sight velocities, confirming the nature of the candidates and their membership in the clouds. Results. Around two hundred new red supergiants have been detected, hinting at a yet to be observed large population. Using near- and mid-infrared photometry we study the brightness distribution of these stars, the onset of mass-loss, and the effect of dust in their atmospheres. Based on this sample, new a priori classification criteria are investigated, combining mid- and near-infrared photometry to improve the observational efficiency of similar programs to this.
Resumo:
Rotation is a key parameter in the evolution of massive stars, affecting their evolution, chemical yields, ionizing photon budget, and final fate. We determined the projected rotational velocity, υ e sin i, of ~330 O-type objects, i.e. ~210 spectroscopic single stars and ~110 primaries in binary systems, in the Tarantula nebula or 30 Doradus (30 Dor) region. The observations were taken using VLT/FLAMES and constitute the largest homogeneous dataset of multi-epoch spectroscopy of O-type stars currently available. The most distinctive feature of the υ e sin i distributions of the presumed-single stars and primaries in 30 Dor is a low-velocity peak at around 100 km s-1. Stellar winds are not expected to have spun-down the bulk of the stars significantly since their arrival on the main sequence and therefore the peak in the single star sample is likely to represent the outcome of the formation process. Whereas the spin distribution of presumed-single stars shows a well developed tail of stars rotating more rapidly than 300 km s-1, the sample of primaries does not feature such a high-velocity tail. The tail of the presumed-single star distribution is attributed for the most part - and could potentially be completely due - to spun-up binary products that appear as single stars or that have merged. This would be consistent with the lack of such post-interaction products in the binary sample, that is expected to be dominated by pre-interaction systems. The peak in this distribution is broader and is shifted toward somewhat higher spin rates compared to the distribution of presumed-single stars. Systems displaying large radial velocity variations, typical for short period systems, appear mostly responsible for these differences.
Resumo:
Context. Analysis of ages and metallicities of star clusters in the Magellanic Clouds provide information for studies on the chemical evolution of the Clouds and other dwarf irregular galaxies. Aims. The aim is to derive ages and metallicities from integrated spectra of 14 star clusters in the Small Magellanic Cloud, including a few intermediate/old age star clusters. Methods. Making use of a full-spectrum fitting technique, we compared the integrated spectra of the sample clusters to three different sets of single stellar population models, using two fitting codes available in the literature. Results. We derive the ages and metallicities of 9 intermediate/old age clusters, some of them previously unstudied, and 5 young clusters. Conclusions. We point out the interest of the newly identified as intermediate/old age clusters HW1, NGC 152, Lindsay 3, Lindsay 11, and Lindsay 113. We also confirm the old ages of NGC 361, NGC 419, Kron 3, and of the very well-known oldest SMC cluster, NGC 121.
Resumo:
The VISTA near infrared survey of the Magellanic System (VMC) will provide deep YJK(s) photometry reaching stars in the oldest turn-off point throughout the Magellanic Clouds (MCs). As part of the preparation for the survey, we aim to access the accuracy in the star formation history (SFH) that can be expected from VMC data, in particular for the Large Magellanic Cloud (LMC). To this aim, we first simulate VMC images containing not only the LMC stellar populations but also the foreground Milky Way (MW) stars and background galaxies. The simulations cover the whole range of density of LMC field stars. We then perform aperture photometry over these simulated images, access the expected levels of photometric errors and incompleteness, and apply the classical technique of SFH-recovery based on the reconstruction of colour-magnitude diagrams (CMD) via the minimisation of a chi-squared-like statistics. We verify that the foreground MW stars are accurately recovered by the minimisation algorithms, whereas the background galaxies can be largely eliminated from the CMD analysis due to their particular colours and morphologies. We then evaluate the expected errors in the recovered star formation rate as a function of stellar age, SFR(t), starting from models with a known age-metallicity relation (AMR). It turns out that, for a given sky area, the random errors for ages older than similar to 0.4 Gyr seem to be independent of the crowding. This can be explained by a counterbalancing effect between the loss of stars from a decrease in the completeness and the gain of stars from an increase in the stellar density. For a spatial resolution of similar to 0.1 deg(2), the random errors in SFR(t) will be below 20% for this wide range of ages. On the other hand, due to the lower stellar statistics for stars younger than similar to 0.4 Gyr, the outer LMC regions will require larger areas to achieve the same level of accuracy in the SFR( t). If we consider the AMR as unknown, the SFH-recovery algorithm is able to accurately recover the input AMR, at the price of an increase of random errors in the SFR(t) by a factor of about 2.5. Experiments of SFH-recovery performed for varying distance modulus and reddening indicate that these parameters can be determined with (relative) accuracies of Delta(m-M)(0) similar to 0.02 mag and Delta E(B-V) similar to 0.01 mag, for each individual field over the LMC. The propagation of these errors in the SFR(t) implies systematic errors below 30%. This level of accuracy in the SFR(t) can reveal significant imprints in the dynamical evolution of this unique and nearby stellar system, as well as possible signatures of the past interaction between the MCs and the MW.
Resumo:
The first deep catalog of the H I Parkes All Sky Survey (HIPASS) is presented, covering the south celestial cap (SCC) region. The SCC area is similar to2400 deg(2) and covers delta < -62&DEG;. The average rms noise for the survey is 13 mJy beam(-1). Five hundred thirty-six galaxies have been cataloged according to their neutral hydrogen content, including 114 galaxies that have no previous cataloged optical counterpart. This is the largest sample of galaxies from a blind H I survey to date. Most galaxies in optically unobscured regions of sky have a visible optical counterpart; however, there is a small population of low-velocity H I clouds without visible optical counterparts whose origins and significance are unclear. The rms accuracy of the HIPASS positions is found to be 1.'9. The H I mass range of galaxies detected is from &SIM;10(6) to &SIM;10(11) M-.. There are a large number of late-type spiral galaxies in the SCC sample (66%), compared with 30% for optically selected galaxies from the same region in the NASA Extragalactic Database. The average ratio of H I mass to B luminosity of the sample increases according to optical type, from 1.8 M-./L-. for early types to 3.2 M-./L-. for late-type galaxies. The H I-detected galaxies tend to follow the large-scale structure traced by galaxies found in optical surveys. From the number of galaxies detected in this region of sky, we predict the full HIPASS catalog will contain &SIM;5000 galaxies, to a peak flux density limit of &SIM;39 mJy (3 σ), although this may be a conservative estimate as two large voids are present in the region. The H I mass function for this catalog is presented in a subsequent paper.
Resumo:
The Large Magellanic Cloud (LMC) has a rich star cluster system spanning a wide range of ages and masses. One striking feature of the LMC cluster system is the existence of an age gap between 3 and 10 Gyr. But this feature is not clearly seen among field stars. Three LMC fields containing relatively poor and sparse clusters whose integrated colours are consistent with those of intermediate-age simple stellar populations have been imaged in BVI with the Optical Imager (SOI) at the Southern Telescope for Astrophysical Research (SOAR). A total of six clusters, five of them with estimated initial masses M < 104 M(circle dot), were studied in these fields. Photometry was performed and colour-magnitude diagrams (CMDs) were built using standard point spread function fitting methods. The faintest stars measured reach V similar to 23. The CMD was cleaned from field contamination by making use of the three-dimensional colour and magnitude space available in order to select stars in excess relative to the field. A statistical CMD comparison method was developed for this purpose. The subtraction method has proven to be successful, yielding cleaned CMDs consistent with a simple stellar population. The intermediate-age candidates were found to be the oldest in our sample, with ages between 1 and 2 Gyr. The remaining clusters found in the SOAR/SOI have ages ranging from 100 to 200 Myr. Our analysis has conclusively shown that none of the relatively low-mass clusters studied by us belongs to the LMC age gap.
Resumo:
Context: The initial distribution of spin rates of massive stars is a fingerprint of their elusive formation process. It also sets a key initial condition for stellar evolution and is thus an important ingredient in stellar population synthesis. So far, most studies have focused on single stars. Most O stars are, however, found in multiple systems.
Aims: By establishing the spin-rate distribution of a sizeable sample of O-type spectroscopic binaries and by comparing the distributions of binary subpopulations with one another and with that of presumed-single stars in the same region, we aim to constrain the initial spin distribution of O stars in binaries, and to identify signatures of the physical mechanisms that affect the evolution of the spin rates of massive stars.
Methods: We use ground-based optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS) to establish the projected equatorial rotational velocities (νesini) for components of 114 spectroscopic binaries in 30 Doradus. The νesini values are derived from the full width at half maximum (FWHM) of a set of spectral lines, using a FWHM vs. νesini calibration that we derive based on previous line analysis methods applied to single O-type stars in the VFTS sample.
Results: The overall νesini distribution of the primary stars resembles that of single O-type stars in the VFTS, featuring a low-velocity peak (at νesini<200 kms-1) and a shoulder at intermediate velocities (200 <νesini<300 kms-1). The distributions of binaries and single stars, however, differ in two ways. First, the main peak at νesini ~ 100kms-1 is broader and slightly shifted towards higher spin rates in the binary distribution than that of the presumed-single stars. This shift is mostly due to short-period binaries (Porb~<10 d). Second, the νesini distribution of primaries lacks a significant population of stars spinning faster than 300 kms-1, while such a population is clearly present in the single-star sample. The νesini distribution of binaries with amplitudes of radial velocity variation in the range of 20 to 200 kms-1 (mostly binaries with Porb ~ 10-1000 d and/or with q<0.5) is similar to that of single O stars below νesini~<170kms-1.
Conclusions: Our results are compatible with the assumption that binary components formed with the same spin distribution as single stars, and that this distribution contains few or no fast-spinning stars. The higher average spin rate of stars in short-period binaries may either be explained by spin-up through tides in such tight binary systems, or by spin-down of a fraction of the presumed-single stars and long-period binaries through magnetic braking (or by a combination of both mechanisms). Most primaries and secondaries of SB2 systems with Porb~<10 d appear to have similar rotational velocities. This is in agreement with tidal locking in close binaries where the components have similar radii. The lack of very rapidly spinning stars among binary systems supports the idea that most stars with νesini~> 300kms-1 in the single-star sample are actually spun-up post-binary interaction products. Finally, the overall similarities (low-velocity peak and intermediate-velocity shoulder) of the spin distribution of binary and single stars argue for a massive star formation process in which the initial spin is set independently of whether stars are formed as single stars or as components of a binary system.
Resumo:
Context. The 30 Doradus (30 Dor) region of the Large Magellanic Cloud, also known as the Tarantula nebula, is the nearest starburst region. It contains the richest population of massive stars in the Local Group, and it is thus the best possible laboratory to investigate open questions on the formation and evolution of massive stars. Aims. Using ground-based multi-object optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS), we aim to establish the (projected) rotational velocity distribution for a sample of 216 presumably single O-type stars in 30 Dor. The sample is large enough to obtain statistically significant information and to search for variations among subpopulations - in terms of spectral type, luminosity class, and spatial location - in the field of view. Methods. We measured projected rotational velocities, 3e sin i, by means of a Fourier transform method and a profile fitting method applied to a set of isolated spectral lines. We also used an iterative deconvolution procedure to infer the probability density, P(3e), of the equatorial rotational velocity, 3e. Results. The distribution of 3e sin i shows a two-component structure: a peak around 80 km s1 and a high-velocity tail extending up to 600 km s-1 This structure is also present in the inferred distribution P(3e) with around 80% of the sample having 0 <3e ≤ 300 km s-1 and the other 20% distributed in the high-velocity region. The presence of the low-velocity peak is consistent with what has been found in other studies for late O- and early B-type stars. Conclusions. Most of the stars in our sample rotate with a rate less than 20% of their break-up velocity. For the bulk of the sample, mass loss in a stellar wind and/or envelope expansion is not efficient enough to significantly spin down these stars within the first few Myr of evolution. If massive-star formation results in stars rotating at birth with a large portion of their break-up velocities, an alternative braking mechanism, possibly magnetic fields, is thus required to explain the present-day rotational properties of the O-type stars in 30 Dor. The presence of a sizeable population of fast rotators is compatible with recent population synthesis computations that investigate the influence of binary evolution on the rotation rate of massive stars. Even though we have excluded stars that show significant radial velocity variations, our sample may have remained contaminated by post-interaction binary products. That the highvelocity tail may be populated primarily (and perhaps exclusively) by post-binary interaction products has important implications for the evolutionary origin of systems that produce gamma-ray bursts. © 2013 Author(s).
Resumo:
Aims. The large and small-scale (pc) structure of the Galactic interstellar medium can be investigated by utilising spectra of early-type stellar probes of known distances in the same region of the sky. This paper determines the variation in line strength of Ca ii at 3933.661 Å as a function of probe separation for a large sample of stars, including a number of sightlines in the Magellanic Clouds.
Methods. FLAMES-GIRAFFE data taken with the Very Large Telescope towards early-type stars in 3 Galactic and 4 Magellanic open clusters in Ca ii are used to obtain the velocity, equivalent width, column density, and line width of interstellar Galactic calcium for a total of 657 stars, of which 443 are Magellanic Cloud sightlines. In each cluster there are between 43 and 111 stars observed. Additionally, FEROS and UVES Ca ii K and Na i D spectra of 21 Galactic and 154 Magellanic early-type stars are presented and combined with data from the literature to study the calcium column density - parallax relationship.
Results. For the four Magellanic clusters studied with FLAMES, the strength of the Galactic interstellar Ca ii K equivalent width on transverse scales from ∼0.05-9 pc is found to vary by factors of ∼1.8-3.0, corresponding to column density variations of ∼0.3-0.5 dex in the optically-thin approximation. Using FLAMES, FEROS, and UVES archive spectra, the minimum and maximum reduced equivalent widths for Milky Way gas are found to lie in the range ∼35-125 mÅ and ∼30-160 mÅ for Ca ii K and Na i D, respectively. The range is consistent with a previously published simple model of the interstellar medium consisting of spherical cloudlets of filling factor ∼0.3, although other geometries are not ruled out. Finally, the derived functional form for parallax (π) and Ca ii column density (NCaII) is found to be π(mas) = 1 / (2.39 × 10-13 × NCaII (cm-2) + 0.11). Our derived parallax is ∼25 per cent lower than predicted by Megier et al. (2009, A&A, 507, 833) at a distance of ∼100 pc and ∼15 percent lower at a distance of ∼200 pc, reflecting inhomogeneity in the Ca ii distribution in the different sightlines studied.
Resumo:
Context. Our understanding of the chemical evolution (CE) of the Galactic bulge requires the determination of abundances in large samples of giant stars and planetary nebulae (PNe). Studies based on high resolution spectroscopy of giant stars in several fields of the Galactic bulge obtained with very large telescopes have allowed important progress. Aims. We discuss PNe abundances in the Galactic bulge and compare these results with those presented in the literature for giant stars. Methods. We present the largest, high-quality data-set available for PNe in the direction of the Galactic bulge (inner-disk/bulge). For comparison purposes, we also consider a sample of PNe in the Large Magellanic Cloud (LMC). We derive the element abundances in a consistent way for all the PNe studied. By comparing the abundances for the bulge, inner-disk, and LMC, we identify elements that have not been modified during the evolution of the PN progenitor and can be used to trace the bulge chemical enrichment history. We then compare the PN abundances with abundances of bulge field giant. Results. At the metallicity of the bulge, we find that the abundances of O and Ne are close to the values for the interstellar medium at the time of the PN progenitor formation, and hence these elements can be used as tracers of the bulge CE, in the same way as S and Ar, which are not expected to be affected by nucleosynthetic processes during the evolution of the PN progenitors. The PN oxygen abundance distribution is shifted to lower values by 0.3 dex with respect to the distribution given by giants. A similar shift appears to occur for Ne and S. We discuss possible reasons for this PNe-giant discrepancy and conclude that this is probably due to systematic errors in the abundance derivations in either giants or PNe (or both). We issue an important warning concerning the use of absolute abundances in CE studies.