775 resultados para fuzzy arithmetic


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work shows an application of a generalized approach for constructing dilation-erosion adjunctions on fuzzy sets. More precisely, operations on fuzzy quantities and fuzzy numbers are considered. By the generalized approach an analogy with the well known interval computations could be drawn and thus we can define outer and inner operations on fuzzy objects. These operations are found to be useful in the control of bioprocesses, ecology and other domains where data uncertainties exist.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents the development and application of a stochastic dynamic programming model with fuzzy state variables for irrigation of multiple crops. A fuzzy stochastic dynamic programming (FSDP) model is developed in which the reservoir storage and soil moisture of the crops are considered as fuzzy numbers, and the reservoir inflow is considered as a stochastic variable. The model is formulated with an objective of minimizing crop yield deficits, resulting in optimal water allocations to the crops by maintaining storage continuity and soil moisture balance. The standard fuzzy arithmetic method is used to solve all arithmetic equations with fuzzy numbers, and the fuzzy ranking method is used to compare two or more fuzzy numbers. The reservoir operation model is integrated with a daily-based water allocation model, which results in daily temporal variations of allocated water, soil moisture, and crop deficits. A case study of an existing Bhadra reservoir in Karnataka, India, is chosen for the model application. The FSDP is a more realistic model because it considers the uncertainty in discretization of state variables. The results obtained using the FSDP model are found to be more acceptable for the case study than those of the classical stochastic dynamic model and the standard operating model, in terms of 10-day releases from the reservoir and evapotranspiration deficit. (C) 2015 American Society of Civil Engineers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Data envelopment analysis (DEA) is a methodology for measuring the relative efficiencies of a set of decision making units (DMUs) that use multiple inputs to produce multiple outputs. Crisp input and output data are fundamentally indispensable in conventional DEA. However, the observed values of the input and output data in real-world problems are sometimes imprecise or vague. Many researchers have proposed various fuzzy methods for dealing with the imprecise and ambiguous data in DEA. This chapter provides a taxonomy and review of the fuzzy DEA (FDEA) methods. We present a classification scheme with six categories, namely, the tolerance approach, the α-level based approach, the fuzzy ranking approach, the possibility approach, the fuzzy arithmetic, and the fuzzy random/type-2 fuzzy set. We discuss each classification scheme and group the FDEA papers published in the literature over the past 30 years. © 2014 Springer-Verlag Berlin Heidelberg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intrinsically fuzzy morphological erosion and dilation are extended to a total of eight operations that have been formulated in terms of a single morphological operation--biased dilation. Based on the spatial coding of a fuzzy variable, a bidirectional projection concept is proposed. Thus, fuzzy logic operations, arithmetic operations, gray-scale dilation, and erosion for the extended intrinsically fuzzy morphological operations can be included in a unified algorithm with only biased dilation and fuzzy logic operations. To execute this image algebra approach we present a cellular two-layer processing architecture that consists of a biased dilation processor and a fuzzy logic processor. (C) 1996 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fuzzy sets in the subject space are transformed to fuzzy solid sets in an increased object space on the basis of the development of the local umbra concept. Further, a counting transform is defined for reconstructing the fuzzy sets from the fuzzy solid sets, and the dilation and erosion operators in mathematical morphology are redefined in the fuzzy solid-set space. The algebraic structures of fuzzy solid sets can lead not only to fuzzy logic but also to arithmetic operations. Thus a fuzzy solid-set image algebra of two image transforms and five set operators is defined that can formulate binary and gray-scale morphological image-processing functions consisting of dilation, erosion, intersection, union, complement, addition, subtraction, and reflection in a unified form. A cellular set-logic array architecture is suggested for executing this image algebra. The optical implementation of the architecture, based on area coding of gray-scale values, is demonstrated. (C) 1995 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mathematical models are often used to describe physical realities. However, the physical realities are imprecise while the mathematical concepts are required to be precise and perfect. The 1st chapter give a brief summary of the arithmetic of fuzzy real numbers and the fuzzy normed algebra M(I). Also we explain a few preliminary definitions and results required in the later chapters. Fuzzy real numbers are introduced by Hutton,B [HU] and Rodabaugh, S.E[ROD]. Our definition slightly differs from this with an additional minor restriction. The definition of Clementina Felbin [CL1] is entirely different. The notations of [HU]and [M;Y] are retained inspite of the slight difference in the concept.the 3rd chapter In this chapter using the completion M'(I) of M(I) we give a fuzzy extension of real Hahn-Banch theorem. Some consequences of this extension are obtained. The idea of real fuzzy linear functional on fuzzy normed linear space is introduced. Some of its properties are studied. In the complex case we get only a slightly weaker analogue for the Hahn-Banch theorem, than the one [B;N] in the crisp case

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paraconsistent logics are non-classical logics which allow non-trivial and consistent reasoning about inconsistent axioms. They have been pro- posed as a formal basis for handling inconsistent data, as commonly arise in human enterprises, and as methods for fuzzy reasoning, with applica- tions in Artificial Intelligence and the control of complex systems. Formalisations of paraconsistent logics usually require heroic mathe- matical efforts to provide a consistent axiomatisation of an inconsistent system. Here we use transreal arithmetic, which is known to be consis- tent, to arithmetise a paraconsistent logic. This is theoretically simple and should lead to efficient computer implementations. We introduce the metalogical principle of monotonicity which is a very simple way of making logics paraconsistent. Our logic has dialetheaic truth values which are both False and True. It allows contradictory propositions, allows variable contradictions, but blocks literal contradictions. Thus literal reasoning, in this logic, forms an on-the- y, syntactic partition of the propositions into internally consistent sets. We show how the set of all paraconsistent, possible worlds can be represented in a transreal space. During the development of our logic we discuss how other paraconsistent logics could be arithmetised in transreal arithmetic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An approximate number is an ordered pair consisting of a (real) number and an error bound, briefly error, which is a (real) non-negative number. To compute with approximate numbers the arithmetic operations on errors should be well-known. To model computations with errors one should suitably define and study arithmetic operations and order relations over the set of non-negative numbers. In this work we discuss the algebraic properties of non-negative numbers starting from familiar properties of real numbers. We focus on certain operations of errors which seem not to have been sufficiently studied algebraically. In this work we restrict ourselves to arithmetic operations for errors related to addition and multiplication by scalars. We pay special attention to subtractability-like properties of errors and the induced “distance-like” operation. This operation is implicitly used under different names in several contemporary fields of applied mathematics (inner subtraction and inner addition in interval analysis, generalized Hukuhara difference in fuzzy set theory, etc.) Here we present some new results related to algebraic properties of this operation.