938 resultados para focal and segmental glomerulosclerosis
Resumo:
Focal and segmental glomerulosclerosis (FSGS) is one of the most important causes of end-stage renal failure. The bradykinin B1 receptor has been associated with tissue inflammation and renal fibrosis. To test for a role of the bradykinin B1 receptor in podocyte injury, we pharmacologically modulated its activity at different time points in an adriamycin-induced mouse model of FSGS. Estimated albuminuria and urinary protein to creatinine ratios correlated with podocytopathy. Adriamycin injection led to loss of body weight, proteinuria, and upregulation of B1 receptor mRNA. Early treatment with a B1 antagonist reduced albuminuria and glomerulosclerosis, and inhibited the adriamycin-induced downregulation of podocin, nephrin, and alpha-actinin-4 expression. Moreover, delayed treatment with antagonist also induced podocyte protection. Conversely, a B1 agonist aggravated renal dysfunction and even further suppressed the levels of podocyte-related molecules. Thus, we propose that kinin has a crucial role in the pathogenesis of FSGS operating through bradykinin B1 receptor signaling. Kidney International (2011) 79, 1217-1227; doi:10.1038/ki.2011.14; published online 16 March 2011
Resumo:
A growing body of evidence demonstrates a correlation between Th2 cytokines and the development of focal and segmental glomerulosclerosis ( FSGS). Therefore, we hypothesized that GSL-1, a monoglycosylceramide from Sphingomonas ssp. with pro-Th1 activity on invariant Natural Killer T ( iNKT) lymphocytes, could counterbalance the Th2 profile and modulate glomerulosclerosis. Using an adriamycin( ADM)-based model of FSGS, we found that BALB/c mice presented albuminuria and glomerular degeneration in association with a Th2-like pro-fibrogenic profile; these mice also expressed a combination of inflammatory cytokines, such as IL-4, IL-1 alpha, IL-1 beta, IL-17, TNF-alpha, and chemokines, such as RANTES and eotaxin. In addition, we observed a decrease in the mRNA levels of GD3 synthase, the enzyme responsible for GD3 metabolism, a glycolipid associated with podocyte physiology. GSL-1 treatment inhibited ADM-induced renal dysfunction and preserved kidney architecture, a phenomenon associated with the induction of a Th1-like response, increased levels of GD3 synthase transcripts and inhibition of pro-fibrotic transcripts and inflammatory cytokines. TGF-beta analysis revealed increased levels of circulating protein and tissue transcripts in both ADM- and GSL-1-treated mice, suggesting that TGF-beta could be associated with both FSGS pathology and iNKT-mediated immunosuppression; therefore, we analyzed the kidney expression of phosphorylated SMAD2/3 and SMAD7 proteins, molecules associated with the deleterious and protective effects of TGF-beta, respectively. We found high levels of phosphoSMAD2/3 in ADM mice in contrast to the GSL-1 treated group in which SMAD7 expression increased. These data suggest that GSL-1 treatment modulates the downstream signaling of TGF-beta through a renoprotective pathway. Finally, GSL-1 treatment at day 4, a period when proteinuria was already established, was still able to improve renal function, preserve renal structure and inhibit fibrogenic transcripts. In conclusion, our work demonstrates that the iNKT agonist GSL-1 modulates the pathogenesis of ADM-induced glomerulosclerosis and may provide an alternative approach to disease management.
Resumo:
Background. The Paulista Registry of Glomerulopathies was created in May 1999 and comprises several centres of São Paulo, the most populous Brazilian State, that concentrates people from all regions of the country who look for health care.Methods. This report includes data from 2086 patients from Brazil submitted to renal biopsy due to the presumed diagnosis of glomerular diseases, registered prospectively since May 1999 until January 2005. Data were collected by the integrants of the 11 centres involved, utilizing a standardized questionnaire.Results. The mean age of the patients was 34.5 +/- 14.6 years. Primary glomerular diseases were more frequent in males (55.1%) than in females; on the other hand, secondary glomerular diseases were more frequent in females (71.8%). The most common clinical presentation was nephrotic syndrome and the frequency of hypertension, at this time, was 55.5%. There was a predominance of indication of biopsies in the third, fourth and fifth decades of life. The most common primary glomerular diseases were focal and segmental glomerulosclerosis (29.7%), followed by membranous nephropathy (20.7%), IgA nephropathy (17.8%), minimal change disease (9.1%), membranoproliferative glomerulonephritis (7%), crescentic glomerulonephritis (4.1%), advanced chronic glomerulopathy (4%), non-IgA mesangial glomerulonephritis (3.8%), diffuse proliferative glomerulonephritis (2.5%), focal segmental proliferative glomerulonephritis (1%) and others (0.3%). The most frequent secondary glomerular disease was lupus nephritis, corresponding to 66.2% of the cases, followed by post-infectious glomerulonephritis (12.5%), diabetic nephropathy (6.2%), diseases associated to paraproteinaemia (4.9%), hereditary diseases (4.6%), vasculitis (3.2%), malignancies (0.9.%), secondary focal segmental glomerulosclerosis (0.6%) and others (0.9%).Conclusion. Focal segmental glomerulosclerosis was the most frequent primary glomerular disease, followed by membranous nephropathy and IgA nephropathy. Lupus nephritis predominated over all the other secondary glomerular diseases.
Resumo:
Although systemic hypertension is very common in patients with glomerulonephritis there is a dispute if this alteration is consequence of the glomerulonephritis per se or is a consequence of the renal failure secondary to the glomerular lesion. With the aim to analyze the factors associated with systemic hypertension, 196 patients with different forms of nephritis were studied. The systemic arterial pressure was measured by standard sphygmomanometer, renal function was evaluated by the determination of the serum creatinine concentration or creatinine clearance. The diagnosis of the type of glomerulonephritis was made on the basis of an examination of kidney biopsy specimens. The prevalence of arterial hypertension among patients with glomerulonephritis was 62.7%. The hypertensive patients were older (hypertensive = 30.6 ± 12.8; normotensive = 25.4 ± 1.6 years; P = 0.03). The prevalence of arterial hypertension was lower in patients with minimal glomerular lesion (12.5%), though their ages were also lower (18.1 ± 3.6 and 29.1 ± 1.03 years; P = 0.03). Arterial hypertension did not correlate with the serum levels of creatinine and albumin; creatinine clearance and 24-h proteinuria. In conclusion: In the patients with glomerulonephritis, the presence of arterial hypertension was associated with a higher mean age whereas the intensity of proteinuria, the level of renal function or the type of glomerulonephritis was not different between the two groups.
Resumo:
Blocking CD28-B7 T-cell costimulation by systemic administration of CTLA4Ig, a fusion protein which binds B7 molecules on the surface of antigen-presenting cells, prevents rejection and induces tolerance in experimental acute allograft rejection models. We tested the effect of CTLA4Ig therapy on the process of chronic renal allograft rejection using an established experimental transplantation model. F344 kidneys were transplanted orthotopically into bilaterally nephrectomized LEW recipients. Control animals received low dose cyclosporine for 10 days posttransplantation. Administration of a single injection of CTLA4Ig on day 2 posttransplant alone or in addition to the low dose cyclosporine protocol resulted in improvement of long-term graft survival as compared with controls. More importantly, control recipients which received cyclosporine only developed progressive proteinuria by 8-12 weeks, and morphological evidence of chronic rejection by 16-24 weeks, including widespread transplant arteriosclerosis and focal and segmental glomerulosclerosis, while animals treated with CTLA4Ig alone or in addition to cyclosporine did not. Competitive reverse transcriptase-PCR and immunohistological analysis of allografts at 8, 16, and 24 weeks showed attenuation of lymphocyte and macrophage infiltration and activation in the CTLA4Ig-treated animals, as compared with cyclosporine-alone treated controls. These data confirm that early blockade of the CD28-B7 T-cell costimulatory pathway prevents later development and evolution of chronic renal allograft rejection. Our results indicate that T-cell recognition of alloantigen is a central event in initiating the process of chronic rejection, and that strategies targeted at blocking T-cell costimulation may prove to be a valuable clinical approach to preventing development of the process.
Resumo:
Focal segmental glomerulosclerosis (FSGS) is a histological lesion with many causes, including inherited genetic defects, with significant proteinuria being the predominant clinical finding at presentation. Mutations in COL4A3 and COL4A4 are known to cause Alport syndrome (AS), thin basement membrane nephropathy, and to result in pathognomonic glomerular basement membrane (GBM) findings. Secondary FSGS is known to develop in classic AS at later stages of the disease. Here, we present seven families with rare or novel variants in COL4A3 or COL4A4 (six with single and one with two heterozygous variants) from a cohort of 70 families with a diagnosis of hereditary FSGS. The predominant clinical finding at diagnosis was proteinuria associated with hematuria. In all seven families, there were individuals with nephrotic-range proteinuria with histologic features of FSGS by light microscopy. In one family, electron microscopy showed thin GBM, but four other families had variable findings inconsistent with classical Alport nephritis. There was no recurrence of disease after kidney transplantation. Families with COL4A3 and COL4A4 variants that segregated with disease represent 10% of our cohort. Thus, COL4A3 and COL4A4 variants should be considered in the interpretation of next-generation sequencing data from such patients. Furthermore, this study illustrates the power of molecular genetic diagnostics in the clarification of renal phenotypes.
Resumo:
The pathogenesis of focal segmental glomerulosclerosis (FSGS) appears to be associated with type-2 cytokines and podocyte dysfunction. In this study, we tested the hypothesis that immunization with the polysaccharide fraction of Propionibacterium acnes (PS), a pro-Th1 agonist, may subvert the type-2 profile and protect podocytes from adriamycin-induced glomerulosclerosis. Adriamycin injection resulted in albuminuria and increased serum creatinine in association with loss of glomerular podocin and podoplanin expression, which is consistent with podocyte dysfunction. Renal tissue analysis revealed the expression of transcripts for GATA3 and fibrogenic-related proteins, such as TGF-beta, tissue inhibitor of metalloproteinase-1 (TIMP-1) and metalloproteinase 9 (MMP9). In association with the expression of fibrogenic transcripts, we observed peri-glomerular expression of a-smooth muscle actin (alpha-SMA), indicating epithelial-to-mesenchymal transition, and increased expression of proliferating cell nuclear antigen (PCNA) in tubular cells, suggesting intense proliferative activity. Previous immunization with PS inhibited albuminuria and serum creatinine in association with the preservation of podocyte proteins and inhibition of fibrogenic transcripts and the expression of alpha-SMA and PCNA proteins. Tissue analysis also revealed that PS treatment induced expression of mRNA for GD3 synthase, which is a glycosiltransferase related to the synthesis of GD3, a ganglioside associated with podocyte physiology. In addition, PS treatment inhibited the influx of inflammatory CD8(pos) and CD11b(pos) cells to kidney tissue. Finally, PS treatment on day 4 post-ADM, a period when proteinuria was already established, was able to improve renal function. Thus, we demonstrate that the PS fraction of P. acnes can inhibit FSGS pathogenesis, suggesting that immunomodulation can represent an alternative approach for disease management. (C) 2011 Elsevier GmbH. All rights reserved.
Resumo:
INTRODUCTION: Focal segmental glomerulosclerosis (FSGS) is the most frequent primary glomerulopathy in Brazil and its incidence is increasing worldwide. Pathogenesis is related to podocyte injury, which may be due to several factors including viruses, drugs, genetics and immunological factors. In 2004, the Columbia classification of FSGS identified five histological variants of the disease: collapsing (COL), usual (NOS), tip lesion (TIP), perihilar (PHI) and cellular variant (CEL). The objective of this study was to classify the FSGS biopsies in these morphological variants. METHODS: One hundred thirty-one cases of renal biopsies with primary FSGS diagnosis, which had been performed at a Brazilian reference center from 1996 to 2006, were classified according to the Columbia criteria. RESULTS: FSGS cases were distributed as follows: 38.2% NOS variant, 36.6% COL, 14.5% TIP, 6.9% PHI and 3.8% CEL. CONCLUSION: COL variant of FSGS seems to be more prevalent in Brazil in comparison with other centers worldwide, which may be related to environmental and socioeconomic factors.
Resumo:
The mechanical environment around the healing of broken bone is very important as it determines the way the fracture will heal. Over the past decade there has been great clinical interest in improving bone healing by altering the mechanical environment through the fixation stability around the lesion. One constraint of preclinical animal research in this area is the lack of experimental control over the local mechanical environment within a large segmental defect as well as osteotomies as they heal. In this paper we report on the design and use of an external fixator to study the healing of large segmental bone defects or osteotomies. This device not only allows for controlled axial stiffness on the bone lesion as it heals, but it also enables the change of stiffness during the healing process in vivo. The conducted experiments have shown that the fixators were able to maintain a 5 mm femoral defect gap in rats in vivo during unrestricted cage activity for at least 8 weeks. Likewise, we observed no distortion or infections, including pin infections during the entire healing period. These results demonstrate that our newly developed external fixator was able to achieve reproducible and standardized stabilization, and the alteration of the mechanical environment of in vivo rat large bone defects and various size osteotomies. This confirms that the external fixation device is well suited for preclinical research investigations using a rat model in the field of bone regeneration and repair.
Resumo:
Main chain and segmental dynamics of polyisoprene (PI) and poly(methyl methacrylate)(PMMA) chains in semi IPNs were systematically studied over a wide range of temperatures (above and below T-g of both polymers) as a function of composition, crosslink density, and molecular weight. The immiscible polymers retained most of its characteristic molecular motion; however, the semi IPN synthesis resulted in dramatic changes in the motional behavior of both polymers due to the molecular level interpenetration between two polymer chains. ESR spin probe method was found to be sensitive to the concentration changes of PMMA in semi IPNs. Low temperature spectra showed the characteristics of rigid limit spectra, and in the range of 293-373 K.complex spectra were obtained with the slow component mostly arisingout of the PMMA rich regions and fast component from the PI phase. We found that the rigid PMMA chains closely interpenetrated into thehighly mobile PI network imparts motional restriction in nearby PI chains, and the highly mobile PI chains induce some degree of flexibility in highly rigid PMMA chains. Molecular level interchain mixing was found to be more efficient at a PMMA concentration of 35 wt.%. Moreover, the strong interphase formed in the above mentionedsemi IPN contributed to the large slow component in the ESR spectra at higher temperature. The shape of the spectra along with the data obtained from the simulations of spectra was correlated to the morphology of the semi IPNs. The correlation time measurement detected the motional region associated with the glass transition of PI and PMMA, and these regions were found to follow the same pattern of shifts in a-relaxation of PI and PMMA observed in DMA analysis. Activation energies associated with the T-g regions were also calculated. T-50G was found to correlate with the T-g of PMMA, and the volume of polymer segments undergoing glass transitional motion was calculated to be 1.7 nm(3).C-13 T-1 rho measurements of PMMA carbons indicate that the molecular level interactions were strong in semi IPN irrespective of the immiscible nature of polymers. The motional characteristics of H atoms attached to carbon atoms in both polymers were analyzed using 2D WISE NMR. Main relaxations of both components shifted inward, and both SEM and TEM analysis showed the development of a nanometer sized morphology in the case of highly crosslinked semi IPN. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The effects of multiwalled carbon nanotubes (MWNTs) on the concentration fluctuations, interfacial driven elasticity, phase morphology, and local segmental dynamics of chains for near-critical compositions of polystyrene/poly(vinyl to methyl ether) (PS/PVME) blends were systematically investigated using dynamic shear rheology and dielectric spectroscopy. The contribution of the correlation length (xi) of the concentration fluctuations to the evolving stresses was monitored in situ to probe the different stages of demixing in the blends. The classical upturn in the dynamic moduli was taken as the rheological demixing temperature (T-rheo), which was also observed to be in close agreement with those obtained using concentration fluctuation variance, <(delta phi)(2)>, versus temperature curves. Further, Fredrickson and Larson's approach involving the mean-field approximation and the double-reptation self-concentration (DRSC) model was employed to evaluate the spinodal decomposition temperature (T-s). Interestingly, the values of both T-rheo and T-s shifted upward in the blends in the presence of MWNTs, manifesting in molecular-level miscibility. These phenomenal changes were further observed to be a function of the concentration of MWNTs. The evolution of morphology as a function of temperature was studied using polarized optical microscopy (POM). It was observed that PVME, which evolved as an interconnected network during the early stages of demixing, coarsened into a matrix-droplet morphology in the late stages. The preferential wetting of PVME onto MWNTs as a result of physicochemical interactions retained the interconnected network of PVME for longer time scales, as supported by POM and atomic force microscopy (AFM) images. Microscopic heterogeneity in macroscopically miscible systems was studied by dielectric relaxation spectroscopy. The slowing of segmental relaxations in PVME was observed in the presence of both ``frozen'' PS and MWNTs interestingly at temperatures much below the calorimetric glass transition temperature (T-g). This phenomenon was observed to be local rather than global and was addressed by monitoring the evolution of the relaxation spectra near and above the demixing temperature.
Resumo:
Surface-functionalized multiwall carbon nanotubes (MWCNTs) are incorporated in poly(methyl methacrylate)/styrene acrylonitrile (PMMA/SAN) blends and the pretransitional regime is monitored in situ by melt rheology and dielectric spectroscopy. As the blends exhibit weak dynamic asymmetry, the obvious transitions in the melt rheology due to thermal concentration fluctuations are weak. This is further supported by the weak temperature dependence of the correlation length ( approximate to 10-12 angstrom) in the vicinity of demixing. Hence, various rheological techniques in both the temperature and frequency domains are adopted to evaluate the demixing temperature. The spinodal decomposition temperature is manifested in an increase in the miscibility gap in the presence of MWCNTs. Furthermore, MWCNTs lead to a significant slowdown of the segmental dynamics in the blends. Thermally induced phase separation in the PMMA/SAN blends lead to selective localization of MWCNTs in the PMMA phase. This further manifests itself in a significant increase in the melt conductivity.
Resumo:
Objective: The purpose of this study was to compare the effects of 2 exercise programs, segmental stabilization exercises (SSEs) and stretching of trunk and hamstrings muscles, on functional disability, pain, and activation of the transversus abdominis muscle (TrA), in individuals with chronic low back pain. Methods: A total of 30 participants were enrolled in this study and randomly assigned to 1 of 2 groups as a function of intervention. In the segmental stabilization group (SS), exercises focused on the TrA and lumbar multifidus muscles, whereas in the stretching group (ST), exercises focused on stretching the erector spinae, hamstrings, and triceps surae. Severity of pain (visual analog scale and McGill pain questionnaire) and functional disability (Oswestry disability questionnaire) and TrA muscle activation capacity (Pressure Biofeedback Unit, or PBU) were compared as a function of intervention. Interventions lasted 6 weeks, and sessions happened twice a week (30 minutes each). Analysis of variance was used for intergroup and intragroup comparisons. Results: As compared with baseline, both treatments were effective in relieving pain and improving disability (P < .001). Those in the SS group had significantly higher gains for all variables. The stretching group did not effectively activate the TrA (P = .94). Conclusion: Both techniques improved pain and reduced disability. In this study, SS was superior to muscular stretching for the measured variables associated with chronic low back pain. (J Manipulative Physiol Ther 2012;35:279-285)