957 resultados para first-order paraconsistent logic
Resumo:
Dynamic logic is an extension of modal logic originally intended for reasoning about computer programs. The method of proving correctness of properties of a computer program using the well-known Hoare Logic can be implemented by utilizing the robustness of dynamic logic. For a very broad range of languages and applications in program veri cation, a theorem prover named KIV (Karlsruhe Interactive Veri er) Theorem Prover has already been developed. But a high degree of automation and its complexity make it di cult to use it for educational purposes. My research work is motivated towards the design and implementation of a similar interactive theorem prover with educational use as its main design criteria. As the key purpose of this system is to serve as an educational tool, it is a self-explanatory system that explains every step of creating a derivation, i.e., proving a theorem. This deductive system is implemented in the platform-independent programming language Java. In addition, a very popular combination of a lexical analyzer generator, JFlex, and the parser generator BYacc/J for parsing formulas and programs has been used.
Resumo:
It has been shown recently that monodic first-order temporal logic without functional symbols but with equality is incomplete, i.e., the set of the valid formulae of this logic is not recursively enumerable. In this paper we show that an even simpler fragment consisting of monodic monadic two-variable formulae is not recursively enumerable.
Resumo:
This paper defines the 3D reconstruction problem as the process of reconstructing a 3D scene from numerous 2D visual images of that scene. It is well known that this problem is ill-posed, and numerous constraints and assumptions are used in 3D reconstruction algorithms in order to reduce the solution space. Unfortunately, most constraints only work in a certain range of situations and often constraints are built into the most fundamental methods (e.g. Area Based Matching assumes that all the pixels in the window belong to the same object). This paper presents a novel formulation of the 3D reconstruction problem, using a voxel framework and first order logic equations, which does not contain any additional constraints or assumptions. Solving this formulation for a set of input images gives all the possible solutions for that set, rather than picking a solution that is deemed most likely. Using this formulation, this paper studies the problem of uniqueness in 3D reconstruction and how the solution space changes for different configurations of input images. It is found that it is not possible to guarantee a unique solution, no matter how many images are taken of the scene, their orientation or even how much color variation is in the scene itself. Results of using the formulation to reconstruct a few small voxel spaces are also presented. They show that the number of solutions is extremely large for even very small voxel spaces (5 x 5 voxel space gives 10 to 10(7) solutions). This shows the need for constraints to reduce the solution space to a reasonable size. Finally, it is noted that because of the discrete nature of the formulation, the solution space size can be easily calculated, making the formulation a useful tool to numerically evaluate the usefulness of any constraints that are added.
Resumo:
In Prior Analytics 1.1–22, Aristotle develops his proof system of non-modal and modal propositions. This system is given in the language of propositions, and Aristotle is concerned with establishing some properties and relations that the expressions of this language enjoy. However, modern scholarship has found some of his results inconsistent with positions defended elsewhere. The set of rules of inference of this system has also caused perplexity: there does not seem to be a single interpretation that validates all the rules which Aristotle is explicitly committed to using in his proofs. Some commentators have argued that these and other problems cannot be successfully addressed from the viewpoint of the traditional, ‘first-order’ interpretation of Aristotle’s syllogistic, whereby propositions are taken to involve quantification over individuals only. Accordingly, this interpretation not only is inadequate for formal analysis, but also stems from a misunderstanding of Aristotle’s ideas about quantification. On the contrary, in this study I purport to vindicate the adequacy and plausibility of the first-order interpretation. Together with some assumptions about the language of propositions and an appropriate regimentation, the first-order interpretation yields promising solutions to many of the problems raised by the modal syllogistic. Thus, I present a reconstruction of the language of propositions and a formal interpretation thereof which will prove respectful and responsive to most of the views endorsed by Aristotle in the ‘modal’ chapters of the Analytics.
Resumo:
First-order temporal logic is a concise and powerful notation, with many potential applications in both Computer Science and Artificial Intelligence. While the full logic is highly complex, recent work on monodic first-order temporal logics has identified important enumerable and even decidable fragments. Although a complete and correct resolution-style calculus has already been suggested for this specific fragment, this calculus involves constructions too complex to be of practical value. In this paper, we develop a machine-oriented clausal resolution method which features radically simplified proof search. We first define a normal form for monodic formulae and then introduce a novel resolution calculus that can be applied to formulae in this normal form. By careful encoding, parts of the calculus can be implemented using classical first-order resolution and can, thus, be efficiently implemented. We prove correctness and completeness results for the calculus and illustrate it on a comprehensive example. An implementation of the method is briefly discussed.
Resumo:
First-order temporal logic is a concise and powerful notation, with many potential applications in both Computer Science and Artificial Intelligence. While the full logic is highly complex, recent work on monodic first-order temporal logics has identified important enumerable and even decidable fragments. In this paper, we develop a clausal resolution method for the monodic fragment of first-order temporal logic over expanding domains. We first define a normal form for monodic formulae and then introduce novel resolution calculi that can be applied to formulae in this normal form. We state correctness and completeness results for the method. We illustrate the method on a comprehensive example. The method is based on classical first-order resolution and can, thus, be efficiently implemented.
Resumo:
In this paper we show how to extend clausal temporal resolution to the ground eventuality fragment of monodic first-order temporal logic, which has recently been introduced by Hodkinson, Wolter and Zakharyaschev. While a finite Hilbert-like axiomatization of complete monodic first order temporal logic was developed by Wolter and Zakharyaschev, we propose a temporal resolution-based proof system which reduces the satisfiability problem for ground eventuality monodic first-order temporal formulae to the satisfiability problem for formulae of classical first-order logic.
Resumo:
Part of network management is collecting information about the activities that go on around a distributed system and analyzing it in real time, at a deferred moment, or both. The reason such information may be stored in log files and analyzed later is to data-mine it so that interesting, unusual, or abnormal patterns can be discovered. In this paper we propose defining patterns in network activity logs using a dialect of First Order Temporal Logics (FOTL), called First Order Temporal Logic with Duration Constrains (FOTLDC). This logic is powerful enough to describe most network activity patterns because it can handle both causal and temporal correlations. Existing results for data-mining patterns with similar structure give us the confidence that discovering DFOTL patterns in network activity logs can be done efficiently.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
RelAPS is an interactive system assisting in proving relation-algebraic theorems. The aim of the system is to provide an environment where a user can perform a relation-algebraic proof similar to doing it using pencil and paper. The previous version of RelAPS accepts only Horn-formulas. To extend the system to first order logic, we have defined and implemented a new language based on theory of allegories as well as a new calculus. The language has two different kinds of terms; object terms and relational terms, where object terms are built from object constant symbols and object variables, and relational terms from typed relational constant symbols, typed relational variables, typed operation symbols and the regular operations available in any allegory. The calculus is a mixture of natural deduction and the sequent calculus. It is formulated in a sequent style but with exactly one formula on the right-hand side. We have shown soundness and completeness of this new logic which verifies that the underlying proof system of RelAPS is working correctly.
Resumo:
Traditional abduction imposes as a precondition the restriction that the background information may not derive the goal data. In first-order logic such precondition is, in general, undecidable. To avoid such problem, we present a first-order cut-based abduction method, which has KE-tableaux as its underlying inference system. This inference system allows for the automation of non-analytic proofs in a tableau setting, which permits a generalization of traditional abduction that avoids the undecidable precondition problem. After demonstrating the correctness of the method, we show how this method can be dynamically iterated in a process that leads to the construction of non-analytic first-order proofs and, in some terminating cases, to refutations as well.