994 resultados para few-cycle ultrashort laser pulses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the generation of tunable light around 400 nm by frequency-doubling ultrashort laser pulses whose spectral phase is modulated by a sum of sinusoidal functions. The linewidth of the ultraviolet band produced is narrower than 1 nm, in contrast to the 12 nm linewidth of the non-modulated incident spectrum. The influence of pixellation of the liquid crystal spatial light modulator on the efficiency of the phase-modulated second harmonic generation is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a simple self-referenced single-shot method for simultaneously measuring two different arbitrary pulses, which can potentially be complex and also have very different wavelengths. The method is a variation of cross-correlation frequency-resolved optical gating (XFROG) that we call double-blind (DB) FROG. It involves measuring two spectrograms, both of which are obtained simultaneously in a single apparatus. DB FROG retrieves both pulses robustly by using the standard XFROG algorithm, implemented alternately on each of the traces, taking one pulse to be ?known? and solving for the other. We show both numerically and experimentally that DB FROG using a polarization-gating beam geometry works reliably and appears to have no nontrivial ambiguities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Important issues related to femtosecond (fs) pulses and its relevance to this thesis are discussed. A fundamental characteristic, like the timebandwidth product for fs pulses is decribed in detail. A brief review of generation of ultrashort pulses and its propagation through an optically transparent media are presented. Interaction of strong pulses with matter and different ionization processes are also described. An overview of the thesis is presented at the end

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of a device based on modified injection-locking techniques is studied by means of numerical simulations. The device incorporates master and slave configurations, each one with a DFB laser and an electroabsortion modulator (EAM). This arrangement allows the generation of high peak power, narrow optical pulses according to a periodic or pseudorandom bit stream provided by a current signal generator. The device is able to considerably increase the modulation bandwidth of free-running gain-switched semiconductor lasers using multiplexing in the time domain. Opportunities for integration in small packages or single chips are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrafast laser pulses have become an integral part of the toolbox of countless laboratories doing physics, chemistry, and biological research. The work presented here is motivated by a section in the ever-growing, interdisciplinary research towards understanding the fundamental workings of light-matter interactions. Specifically, attosecond pulses can be useful tools to obtain the desired insight. However access to, and the utility of, such pulses is dependent on the generation of intense, few-cycle, carrier-envelope-phase stabilized laser pulses. The presented work can be thought of as a sort of roadmap towards the latter. From the oscillator which provides the broadband seed to amplification methods, the integral pieces necessary for the generation of attosecond pulses are discussed. A range of topics from the fundamentals to design challenges is presented, outfitting the way towards the practical implementation of an intense few-cycle carrier-envelope-phase stabilized laser source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The theoretical model and underlying physics described in this thesis are about the interaction of femtosecond-laser and XUV pulses with solids. The key to understand the basics of such interaction is to study the structural response of the materials after laser interaction. Depending on the laser characteristics, laser-solid interaction can result in a wide range of structural responses such as solid-solid phase transitions, vacuum phonon squeezing, ultrafast melting, generation of coherent phonons, etc. During my research work, I have modeled the systems irradiated by low-, medium- and high-laser intensities, and studied different types of structural dynamics of solids at various laser fluences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The momentum distributions of electrons ionized from H atoms by chirped few-cycle attosecond pulses are investigated by numerically solving the time-dependent Schrödinger equation. The central carrier frequency of the pulse is chosen to be 25 eV, which is well above the ionization threshold. The asymmetry (or difference) in the yield of electrons ionized along and opposite to the direction of linear laser polarization is found to be very sensitive to the pulse chirp (for pulses with fixed carrier-envelope phase), both for a fixed electron energy and for the energy-integrated yield. In particular, the larger the pulse chirp, the larger the number of times the asymmetry changes sign as a function of ionized electron energy. For a fixed chirp, the ionized electron asymmetry is found to be sensitive also to the carrier-envelope phase of the few-cycle pulse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets,high amplitude EM pulses propagate away from the interaction point and are transported along anystalks and wires attached to the target. The propagation of these high amplitude pulses along a thinwire connected to a laser irradiated target was diagnosed via the proton radiography technique,measuring a pulse duration of 20 ps and a pulse velocity close to the speed of light. The strongelectric field associated with the EM pulse can be exploited for controlling dynamically the protonbeams produced from a laser-driven source. Chromatic divergence control of broadband laser drivenprotons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supportingwire around the proton beam axis to create a helical coil structure. In addition to providingfocussing and energy selection, the technique has the potential to post-accelerate the transiting protonsby the longitudinal component of the curved electric field lines produced by the helical coil lens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the ion acceleration mechanisms that occur during the interaction of an intense and ultrashort laser pulse ( λ > μ I 2 1018 W cm−2 m2) with an underdense helium plasma produced from an ionized gas jet target. In this unexplored regime, where the laser pulse duration is comparable to the inverse of the electron plasma frequency ωpe, reproducible non-thermal ion bunches have been measured in the radial direction. The two He ion charge states present energy distributions with cutoff energies between 150 and 200 keV, and a striking energy gap around 50 keV appearing consistently for all the shots in a given density range. Fully electromagnetic particle-in-cell simulations explain the experimental behaviors. The acceleration results from a combination of target normal sheath acceleration and Coulomb explosion of a filament formed around the laser pulse propagation axis

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrashort laser pulses from vertical-external-cavity surface-emitting lasers (VECSELs) have been receiving much attention in the semiconductor laser community since the first demonstration of sub-ps-pulsed devices more than a decade ago. Originally relying on semiconductor saturable-absorber mirrors for pulse formation, mode-locked operation has not only become accessible by using a variety of saturable absorbers, but also by using a saturable-absorber-free technique referred to as self-mode-locking (SML). Here, we highlight achievements in the field of SML-VECSELs with quantum-well and quantum-dot gain chips, and study the influence of a few VECSEL parameters on the assumed nonlinear lensing behavior in the system. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present work was to study the morphology and structure of the nanoparticles produced by femtosecond laser ablation of fused silica. Ultrashort laser pulses of 1030 nm wavelength and 550 fs duration were tightly focused by a high numerical aperture microscope objective at the surface of fused silica samples while scanning the sample in relation to the stationary laser beam. Laser tracks were created with pulse energies in the range 5-100 mu J, resulting in ablation debris of different morphologies. The debris were examined by scanning and transmission electron microscopy for their morphology and crystal structure in relation to the incident laser pulse energy. Ejected particles with sizes ranging from a few nanometers to a few microns were found. Their morphologies can be broadly classified into three categories: very fine round nanoparticles with diameters lower than 20 nm, nanoparticles with intermediate sizes between 50 and 200 nm, and big irregular particles with typical size between 0.5 and 1.5 mu m. The fine nanoparticles of the first category are predominantly observed at higher pulse energies and tend to aggregate to form web-like and arborescent-like structures. The nanoparticles with intermediate sizes are observed for all pulse energies used and may appear isolated or aggregated in clusters. Finally, the larger irregular particles of the third category are observed for all energies and appear normally isolated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we report the observation of the blue visible fluorescence at 420 nm in rubidium vapour as a result of two-photon absorption excited by femtosecond laser pulses 790 nm. After experimental investigation of the spa-tial and spectral characteristics of the obtained emission we can claim that mechanism of this coherent fluorescence at 420 nm was not caused by ampli-fied spontaneous emission, but represents the nondegenerate four-wave mixing. As a probable outcome of this investigation an opportunity of creation an ultrafast all-optical switcher might appear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many nonlinear optical microscopy techniques based on the high-intensity nonlinear phenomena were developed recent years. A new technique based on the minimal-invasive in-situ analysis of the specific bound elements in biological samples is described in the present work. The imaging-mode Laser-Induced Breakdown Spectroscopy (LIBS) is proposed as a combination of LIBS, femtosecond laser material processing and microscopy. The Calcium distribution in the peripheral cell wall of the sunflower seedling (Helianthus Annuus L.) stem is studied as a first application of the imaging-mode LIBS. At first, several nonlinear optical microscopy techniques are overviewed. The spatial resolution of the imaging-mode LIBS microscope is discussed basing on the Point-Spread Function (PSF) concept. The primary processes of the Laser-Induced Breakdown (LIB) are overviewed. We consider ionization, breakdown, plasma formation and ablation processes. Water with defined Calcium salt concentration is used as a model of the biological object in the preliminary experiments. The transient LIB spectra are measured and analysed for both nanosecond and femtosecond laser excitation. The experiment on the local Calcium concentration measurements in the peripheral cell wall of the sunflower seedling stem employing nanosecond LIBS shows, that nanosecond laser is not a suitable excitation source for the biological applications. In case of the nanosecond laser the ablation craters have random shape and depth over 20 µm. The analysis of the femtosecond laser ablation craters shows the reproducible circle form. At 3.5 µJ laser pulse energy the diameter of the crater is 4 µm and depth 140 nm for single laser pulse, which results in 1 femtoliter analytical volume. The experimental result of the 2 dimensional and surface sectioning of the bound Calcium concentrations is presented in the work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Femtosecond laser pulses generated from an amplified coiliding pulse modelocked ring dye laser have been employed in molecular beam experiments to study the dynamics and the pathways of multiphoton induced ionization, autoionization and fragmentation of Na2 . Energy distributions of photoelectrons arising from these processes and the mass and released kinetic energy of the corresponding fragment ions are measured by time-of-flight spectroscopy.