226 resultados para fermion
Resumo:
In a 4D chiral Thirring model we analyze the possibility that radiative corrections may produce spontaneous breaking of Lorentz and CPT symmetry. By studying the effective potential, we verified that the chiral current (psi) over bar gamma(mu)gamma(5)psi may assume a nonzero vacuum expectation value which triggers Lorentz and CPT violations. Furthermore, by making fluctuations on the minimum of the potential we dynamically induce a bumblebee-like model containing a Chem-Simons term.
Resumo:
We calculate the entanglement entropy of blocks of size x embedded in a larger system of size L, by means of a combination of analytical and numerical techniques. The complete entanglement entropy in this case is a sum of three terms. One is a universal x- and L-dependent term, first predicted by Calabrese and Cardy, the second is a nonuniversal term arising from the thermodynamic limit, and the third is a finite size correction. We give an explicit expression for the second, nonuniversal, term for the one-dimensional Hubbard model, and numerically assess the importance of all three contributions by comparing to the entropy obtained from fully numerical diagonalization of the many-body Hamiltonian. We find that finite-size corrections are very small. The universal Calabrese-Cardy term is equally small for small blocks, but becomes larger for x > 1. In all investigated situations, however, the by far dominating contribution is the nonuniversal term stemming from the thermodynamic limit.
Resumo:
We investigate entanglement of strongly interacting fermions in spatially inhomogeneous environments. To quantify entanglement in the presence of spatial inhomogeneity, we propose a local-density approximation (LDA) to the entanglement entropy, and a nested LDA scheme to evaluate the entanglement entropy on inhomogeneous density profiles. These ideas are applied to models of electrons in superlattice structures with different modulation patterns, electrons in a metallic wire in the presence of impurities, and phase-separated states in harmonically confined many-fermion systems, such as electrons in quantum dots and atoms in optical traps. We find that the entanglement entropy of inhomogeneous systems is strikingly different from that of homogeneous systems.
Resumo:
Nine classes of integrable boundary conditions for the eight-state supersymmetric model of strongly correlated fermions are presented. The boundary systems are solved by using the coordinate Bethe ansatz method and the Bethe ansatz equations for all nine cases are given.
Resumo:
The graded-fermion algebra and quasispin formalism are introduced and applied to obtain the gl(m\n)down arrow osp(m\n) branching rules for the two- column tensor irreducible representations of gl(m\n), for the case m less than or equal to n(n > 2). In the case m < n, all such irreducible representations of gl(m\n) are shown to be completely reducible as representations of osp(m\n). This is also shown to be true for the case m=n, except for the spin-singlet representations, which contain an indecomposable representation of osp(m\n) with composition length 3. These branching rules are given in fully explicit form. (C) 1999 American Institute of Physics. [S0022-2488(99)04410-2].
Resumo:
We construct the Drinfeld twists ( factorizing F-matrices) of the gl(m-n)-invariant fermion model. Completely symmetric representation of the pseudo-particle creation operators of the model are obtained in the basis provided by the F-matrix ( the F-basis). We resolve the hierarchy of the nested Bethe vectors in the F-basis for the gl(m-n) supersymmetric model.
Resumo:
We investigate spectral functions extracted using the maximum entropy method from correlators measured in lattice simulations of the (2+1)-dimensional four-fermion model. This model is particularly interesting because it has both a chirally broken phase with a rich spectrum of mesonic bound states and a symmetric phase where there are only resonances. In the broken phase we study the elementary fermion, pion, sigma, and massive pseudoscalar meson; our results confirm the Goldstone nature of the π and permit an estimate of the meson binding energy. We have, however, seen no signal of σ→ππ decay as the chiral limit is approached. In the symmetric phase we observe a resonance of nonzero width in qualitative agreement with analytic expectations; in addition the ultraviolet behavior of the spectral functions is consistent with the large nonperturbative anomalous dimension for fermion composite operators expected in this model.
Resumo:
We look for minimal chiral sets of fermions beyond the standard model that are anomaly free and, simultaneously, vectorlike particles with respect to color SU(3) and electromagnetic U(1). We then study whether the addition of such particles to the standard model particle content allows for the unification of gauge couplings at a high energy scale, above 5.0 x 10(15) GeV so as to be safely consistent with proton decay bounds. The possibility to have unification at the string scale is also considered. Inspired in grand unified theories, we also search for minimal chiral fermion sets that belong to SU(5) multiplets, restricted to representations up to dimension 50. It is shown that, in various cases, it is possible to achieve gauge unification provided that some of the extra fermions decouple at relatively high intermediate scales.
Resumo:
The possibilities of pairing in two-dimensional boson-fermion mixtures are carefully analyzed. It is shown that the boson-induced attraction between two identical fermions dominates the p wave pairing at low density. For a given fermion density, the pairing gap becomes maximal at a certain optimal boson concentration. The conditions for observing pairing in current experiments are discussed.
Resumo:
Temperature dependent resistivity, p, magnetic susceptibility, X, and far-infrared reflectance measurements were made on the low Tc superconductor UBe13. Two variants of UBe13 have been proposed, named 'L'- (for low Tc ) and 'H'-type (for high Tc ). Low temperature resistivity measurements confirmed that our sample was of H-type and that the transition temperature was at 0.9 K. This was further confirmed with the observation of this transition in the AC-susceptibility. Low temperature reflectance measurements showed a decrease in the reflectivity as the temperature is lowered from 300 to 10 K, which is in qualitative agreement with the increasing resistivity in this temperature range as temperature is lowered. No dramatic change in the reflectivity was observed between 10 and 0.75 K. A further decrease of the reflectance was observed for the temperature of 0.5 K. The calculated optical conductivity shows a broad minimum near 80 cm-1 below 45 K. Above 45 K the conductivity is relatively featureless. As the temperature is lowered, the optical conductivity decreases. The frequency dependent scattering rate was found to be flat for temperatures between 300 and 45 K. The development of a peak, at around 70 cm-1 was found for temperatures of 45 K and below. This peak has been associated with the energy at which the transition to a coherent state occurs from single impurity scattering in other heavy fermion systems. The frequency dependent mass enhancement coefficient was found to increase at low frequencies as the frequency decreases. Its' magnitude as frequency approaches zero also increased as the temperature decreased.
Resumo:
The optical response to far infrared radiation has been measured on a mosaic of heavy fermion CeColnssingle crystals. The superconducting transition temperature of the crystals has been determined by van der Pauw resistivity and ac-susceptibility measurements as Tc = 2.3 K. The optical measurements were taken above and below the transition temperature using a 3He cryostat and step and integrate Martin-Puplett type polarizing interferometer. The absolute reflectance of the heavy fermion CeColns in the superconducting state in range (0, 100)cm-1 was calculated from the measured thermal reflectance, using the normal state data of Singley et al and a low frequency extrapolation for a metallic material in the Hagen-Rubens regime. By means of Kramers-Kronig analysis the absolute reflectance was used to calculate the optical conductivity of the sample. The real part of the calculated complex conductivity 0-(w) ofCeColns indicates a possible opening of an energy gap close to 50 em-I.
Resumo:
The optical response to far infrared radiation has been measured on a mosaic of heavy fermion CeCoIns single crystals. The superconducting transition temperature of the crystals has been determined by van der Pauw resistivity and ac-susceptibility measurements as Tc = 2.3 K. The optical measurements were taken above and below the transition temperature using a ^He cryostat and step and integrate Martin-Puplett type polarizing interferometer. The absolute reflectance of the heavy fermion CeCoIns in the superconducting state in range (0, 100)cm~^ was calculated from the measured thermal reflectance, using the normal state data of Singley et al and a low frequency extrapolation for a metallic material in the Hagen-Rubens regime. By means of Kramers-Kronig analysis the absolute reflectance was used to calculate the optical conductivity of the sample. The real part of the calculated complex conductivity a{u)) of CeCoIns indicates a possible opening of an energy gap close to 50 cm~^.
Resumo:
In this paper we study fermion perturbations in four-dimensional black holes of string theory, obtained either from a non-extreme configuration of three intersecting five-branes with a boost along the common string or from a non-extreme intersecting system of two two-branes and two five-branes. The Dirac equation for the massless neutrino field, after conformal re-scaling of the metric, is written as a wave equation suitable to study the time evolution of the perturbation. We perform a numerical integration of the evolution equation, and with the aid of Prony fitting of the time-domain profile, we calculate the complex frequencies that dominate the quasinormal ringing stage, and also determine these quantities by the semi-analytical sixth-order WKB method. We also find numerically the decay factor of fermion fields at very late times, and show that the falloff is identical to those showing for massless fields in other four-dimensional black hole spacetimes.
Resumo:
The concept of Fock space representation is developed to deal with stochastic spin lattices written in terms of fermion operators. A density operator is introduced in order to follow in parallel the developments of the case of bosons in the literature. Some general conceptual quantities for spin lattices are then derived, including the notion of generating function and path integral via Grassmann variables. The formalism is used to derive the Liouvillian of the d-dimensional Linear Glauber dynamics in the Fock-space representation. Then the time evolution equations for the magnetization and the two-point correlation function are derived in terms of the number operator. (C) 2008 Elsevier B.V. All rights reserved.