63 resultados para extrafloral nectaries
Resumo:
Studies of ant-plant relationships elucidate how top-down effects of the third trophic level can affect the biomass, richness, and/or species composition of plants. Although widespread in the neotropics, few studies have so far examined the direct effects of ants on plant fitness. Here, through experimental manipulation (ant-exclusion) under natural conditions, we examined the effect of ant visitation to extrafloral nectaries on leaf herbivory and fruit set in Chamaecrista debilis in the Brazilian savanna. As opposed to other Chamaecrista species, our results showed that visiting ants (15 species) significantly reduce herbivory and increase fruit set by more than 50% compared to plants from which ants were excluded. This mutualistic system is facultative in nature, and corroborates the potential beneficial role of exudate-feeding ants as anti-herbivore agents of tropical plants. (C) 2010 Elsevier GmbH. All rights reserved.
New record of predatory ladybird beetle (Coleoptera, Coccinellidae) feeding on extrafloral nectaries
Resumo:
New record of predatory ladybird beetle (Coleoptera, Coccinellidae) feeding on extrafloral nectaries. Feeding by Exoplectra miniata (Germar) on extrafloral nectaries of Inga edulis Mart. was observed in Nova Friburgo, Rio de Janeiro, Brazil. This is the first record of this behavior for Exoplectrini.
Resumo:
Most studies aiming to determine the beneficial effect of ants on plants simply consider the effects of the presence or exclusion of ants on plant yield. This approach is often inadequate, however, as ants interact with both non-tended herbivores and tended Homoptera. Moreover, the interaction with these groups of organisms is dependent on ant density, and these functional relationships are likely to be non-linear. A model is presented here that segregates plant herbivores into two categories depending on the sign of their numerical response to ants (myrmecophiles increase with ants, non-tended herbivores decline). The changes in these two components of herbivores with increasing ant density and the resulting implications for ant-plant mutualisms are considered. It emerges that a wide range of ant densities needs to be considered as the interaction sign (mutualism or parasitism) and strength is likely to change with ant density. The model is used to interpret the results of an experimental study that varied levels of Aphis fabae infestation and Lasius niger ant attendance on Vicia faba bean plants. Increasing ant density consistently reduced plant fitness and thus, in this location, the interaction between the ants and the plant can be considered parasitic. In the Vicia faba system, these costs of ants are unlikely to be offset by other beneficial agents (e.g., parasitoids), which also visit extrafloral nectaries.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Extrafloral nectaries are nectar-secreting structures that are especially common among the woody flora of the Brazilian cerrado, a savanna-like vegetation. In this study, we provide morphological and anatomical descriptions of extrafloral nectaries (EFNs) occurring on vegetative and reproductive organs of several plant species from the cerrado, and discuss their function and ecological relevance. We describe the morphology and anatomy of EFNs of 40 species belonging to 15 woody families using scanning electron microscopy and light microscopy. We categorise EFNs following a structural-topographical classification, and characterise the vascularised and complex nectaries, amorphous nectaries and secretory trichomes. Fabaceae, Bignoniaceae, Malpighiaceae and Vochysiaceae were the plant families with the majority of species having EFNs. Ten species possess more than one morphotype of gland structure. Observations and experimental field studies in the cerrado support the anti-herbivore role of EFN-gathering ants in this habitat. Additional morphological studies of EFNs-bearing plants, including other growth forms (e.g. herbs and lianas), are being undertaken and will hopefully cast further light on the ecological relevance of these glands in the cerrado, especially with respect to their attractiveness to multiple visitors.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper describes the anatomy and morphology of the complex nectary systems of the tropical tree Guarea macrophylla Vahl (Meliaceae) and presents the first record of extrafloral nectaries occurring on reproductive organs (fruits) of a member of the order Sapindales. The extrafloral nectaries of G. macrophylla occur on petioles, petiolules, the abaxial surface of all leaflets, leaf buds, and over the surface of fruits. All extrafloral nectaries are distinctly raised above the surface. Foraging ants collect extrafloral nectar on Guarea trees both day and night. We suggest that the presence of extrafloral nectaries might be a useful taxonomic character for the identification of Guarea species.
Resumo:
Surveys were carried out in terra firme' forest, successional forest, buritirana' (palm vegetation) and shrub canga' (savanna). Extrafloral nectaries (EFNs) were present in 30 plant species belonging to 22 genera and 14 families. Nectary species represented 17.6-53.3% of the species samples in different areas, with local abundances varying from 19.1-50.0%. The percentage of species with EFNs was greater in the flora of the shrub canga than in the terra firme and successional forests. Nectary plants were more abundant in the shrub canga and successional forest. The high abundance of EFNs may be the result of intense foraging activity by ants on plants, leading to the formation of facultative mutualism. -from Authors
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Much effort has been devoted to understanding the function of extrafloral nectaries (EFNs) for antplantherbivore interactions. However, the pattern of evolution of such structures throughout the history of plant lineages remains unexplored. In this study, we used empirical knowledge on plant defences mediated by ants as a theoretical framework to test specific hypotheses about the adaptive role of EFNs during plant evolution. Emphasis was given to different processes (neutral or adaptive) and factors (habitat change and trade-offs with new trichomes) that may have affected the evolution of antplant associations. We measured seven EFN quantitative traits in all 105 species included in a well-supported phylogeny of the tribe Bignonieae (Bignoniaceae) and collected field data on antEFN interactions in 32 species. We identified a positive association between ant visitation (a surrogate of ant guarding) and the abundance of EFNs in vegetative plant parts and rejected the hypothesis of phylogenetic conservatism of EFNs, with most traits presenting K-values < 1. Modelling the evolution of EFN traits using maximum likelihood approaches further suggested adaptive evolution, with static-optimum models showing a better fit than purely drift models. In addition, the abundance of EFNs was associated with habitat shifts (with a decrease in the abundance of EFNs from forest to savannas), and a potential trade-off was detected between the abundance of EFNs and estipitate glandular trichomes (i.e. trichomes with sticky secretion). These evolutionary associations suggest divergent selection between species as well as explains K-values < 1. Experimental studies with multiple lineages of forest and savanna taxa may improve our understanding of the role of nectaries in plants. Overall, our results suggest that the evolution of EFNs was likely associated with the adaptive process which probably played an important role in the diversification of this plant group.
Resumo:
Despite the general belief that the interaction between extrafloral nectaries (EFNs) and ants is mutualistic, the defensive function of EFNs has been poorly documented in South American savannas. In this article, we evaluate the potential impact of EFNs (benefits and costs) on two species of plants from the dry areas of Central Brazil, Anemopaegma album and Anemopaegma scabriusculum (Bignoniaceae). In particular, we characterize the composition of substances secreted by the EFNs, test whether EFNs attract ants, and whether ants actually present a defensive role, leading to reduced herbivory and increased plant fitness. Histochemical analyses indicated that EFNs from both species of Anemopaegma secrete an exudate that is composed of sugars, and potentially lipids and proteins. Furthermore, EFNs from both species were shown to present a significant role in ant attraction. However, contrary to common expectations, ants were not found to protect plants against herbivore attack. No effect was found between ant visitation and flower or fruit production in A. album, while the presence of ants led to a significant decrease in flower production in A. scabriusculum. These results suggest that EFNs might present a similar cost and benefit in A. album, and a higher cost than benefit in A. scabriusculum. Since the ancestor of Anemopaegma occupied humid forests and already presented EFNs that were maintained in subsequent lineages that occupied savannas, we suggest that phylogenetic inertia might explain the presence of EFNs in the species of Anemopaegma in which EFNs lack a defensive function.
Resumo:
ABSTRACT Nodal glands are found in one third of the Polygalaceae genera and have valuable taxonomic, ecological and evolutionary significance. In Brazil, they occur in five of the eleven genera already registered. However, there is still a controversy regarding the origin of these structures. The objective of this study was to characterize the morphology and the origin of nodal glands inCaamembeca spectabilis, in order to increase the structural and functional knowledge of these glands in the genera. Samples of nodal regions were collected, fixed and processed according to the methods of light microscopy and electron scanning. Ants were observed and identified along the stem axis. The glucose in exudate allows us to classify these glands as extrafloral nectaries. They are located in pairs on the nodal region. However, its origin is in the leaf trace. In the longitudinal section, the nectaries were present in the apex of cells with anticlinal walls impregnated with suberin, which represents the first record for the family. In this region there is also the formation of a hole by lysis. The secretory tissue is surrounded by phloem. Xylem vessels were observed only on the basis of the nectary, where there are also idioblasts with crystals in druse type. We have studied the ontogeny of the glands nodal in Caamembeca spectabilis and unveiled that these glands are linked to the leaves as stipular nectaries. In addition, the new findings presented here may add support for the understanding of morphology and anatomy of nodal glands in Caamembeca.
Resumo:
Assassin bugs (Reduviidae) are voracious insects that prey on other arthropods. Recent evidences have pointed out that these predators also feed on plant derived substances in rare opportunities. The present study describes the feeding behavior of the reduviid Atopozelus opsimus on extrafloral nectaries of Inga vera (Fabaceae) in a Neotropical savanna area. It was investigated if the insects feed more frequently of extrafloral nectar or prey, and if individuals of different stages of development vary according to feeding behavior. Notably, the results suggest that the diet of all instars and adults consist mainly of extrafloral nectar (N = 1013), in detriment of captured prey ingestion (N = 18). Also, there was no variation on feeding behavior and life stage.
Resumo:
Extrafloral nectaries (EFNs) are structurally variable and widely spread among the angiosperms. The occurrence of EFNs in leaves of Pterodon polygalaeflorus Benth. and Pterodon pubescens Benth. (Fabaceae: Papilionoideae) were detected in adult specimens, at the time of production of new buds and flowers. The goals of the present study are to register the occurrence of the EFNs in P. pubescens and P. polygalaeflorus, and provide comparative data on the anatomical structures. The EFNs occur in the rachis and are located under the insertion of each petiolule. Each nectary consists of a small elevation whose apical portion is deeply invaginated, resulting in a depression (secretory pole), a common characteristic of both species. Unicellular, nonglandular trichomes occur along the rachis, being less numerous in P. polygalaeflorus while in P. pubescens they cover the EFNs. The secretory tissue consists of parenchyma cells with dense cytoplasm compactly arranged. The nectar reaches the surface of the EFNs by rupturing the thin cuticle which covers the secretory pole, since both species lack stomata or any other interruption at the epidermis. The basic difference between the two species, in relation to the EFNs, is the density of the pubescence, which is always greater in P. pubescens. Structural and dimensional modifications may be observed, even between basal and apical nectaries in the same rachis, so it does not constitute a taxonomical tool.
Resumo:
This paper reports on the extrafloral nectary (EFN) of Hibiscus pernambucensis, a native shrub species occurring in mangrove and restinga along Brazil's coastline. EFNs occur as furrows with a protuberant border on the abaxial surface veins of the leaf blade. Each nectary consists of numerous secretory multicellular trichomes, epidermal cells in palisade-like arrangements and non-vascularized parenchyma tissue. Nectar secretion is prolonged, since secretion starts in very young leaves and remains up to completely expanded leaves. Reduced sugars, lipids, and proteins were histochemically detected in all the nectary cells; phenolic substances were detected in the vacuoles of the epidermal palisade cells and in some secretory trichome cells. The secretory cells that constitute the body of trichomes have large nuclei, dense cytoplasm with numerous mitochondria, dictyosomes, scattered lipid droplets and plastids with different inclusions: protein, lipid droplets or starch grains; vacuoles with different sizes have membranous material, phenolic and lipophilic substances. The palisade cells show thick periclinal walls, reduced cytoplasm with voluminous lipid drops and developed vacuoles. The nectary parenchyma cells contain abundant plasmodesmata and cytoplasm with scattered lipid droplets, mitochondria, plastids with starch grains and endoplasmic reticulum. Mucilage idioblasts are common in the inner nectary parenchyma. Protoderm and ground meristem participate in the formation of EFN. Our data indicate that all nectary regions are involved in nectar production and secretion, constituting a functional unit. Longevity of the extrafloral nectaries is likely associated with the presence of mucilage idioblasts, which increases the capacity of the nectary parenchyma to store water.