985 resultados para environmental remediation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photocatalysis refers to the oxidation and reduction reactions on semiconductor surfaces, mediated by the valence band holes and conduction band electrons, which are generated by the absorption of ultraviolet or visible light radiation. Photocatalysis is widely being practiced for the degradation and mineralization of hazardous organic compounds to CO2 and H2O, reduction of toxic metal ions to their non-toxic states, deactivation and destruction of water borne microorganisms, decomposition of air pollutants like volatile organic compounds, NOx, CO and NH3, degradation of waste plastics and green synthesis of industrially important chemicals. This review attempts to showcase the well established mechanism of photocatalysis, the use of photocatalysts for water and air pollution control,visible light responsive modified-TiO2 and non-TiO2 based materials for environmental and energy applications, and the importance of developing reaction kinetics for a comprehensive understanding and design of the processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research in the field of photocatalytic reactors in the past three decades has been an area of extensive and diverse activity with an extensive range of suspended and fixed film photocatalyst configurations being reported. The key considerations for photocatalytic reactors, however, remain the same; effective mass transfer of pollutants to the photocatalyst surface and effective deployments and illumination of the photocatalyst. Photocatalytic reactors have the potential versatility to be applied to the remediation of a range of water and gaseous effluents. Furthermore they have also been applied to the treatment of potable waters. The scale-up of photocatalytic reactors for waste and potable water treatment plants has also been demonstrated. Systems for the reduction of carbon dioxide to fuel products have also been reported. This paper considers the main photocatalytic reactor configurations that have been reported to date. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growing interest in environmental protection has led to the development of emerging biotechnologies for environmental remediation also introducing the biorefinery concept. This work mainly aimed to evaluate the applicability of innovative biotechnologies for environmental remediation and bioenergy production, throught fermentative processes. The investigated biotechnologies for waste and wastewater treatment and for the valorisation of specific feedstocks and energy recovery, were mainly focused on four research lines. 1. Biotechnology for textile wastewater treatment and water reuse that involving anaerobic and aerobic processes in combination with membrane technologies. Combinations of different treatments were also implemented for water reuse in a textile company. 2. Biotechnology for the treatment of solid waste and leachate in landfill and for biogas production. Landfill operated as Bioreactor with recirculation of the generated leachate was proposed for organic matter biostabilisation and for ammonia removal from leachate by favouring the Anammox process. 3. An innovative two-stage anaerobic process for effective codigestion of waste from the dairy industry, as cheese whey and dairy manure, was studied by combining conventional fermentative processes with a simplified system design for enhancing biomethanisation. 4) The valorisation of the glycerol waste as surplus by-product of the biodiesel industry was investigated via microbial conversion to value-added chemicals, as 1,3-propanediol. The investigated fermentative processes have been successfully implemented and reached high yields of the produced bio-chemical. The studied biotechnological systems proved to be feasible for environmental remediation and bioenergy and chemicals production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface reactive phases of soils and aquifers, comprised of phyllosilicate and metal oxohydroxide minerals along with humic substances, play a critical role in the regulation of contaminant fate and transport. Much of our knowledge concerning contaminant-mineral interactions at the molecular level, however, is derived from extensive experimentation on model mineral systems. Although these investigations have provided a foundation for understanding reactive surface functional groups on individual mineral phases, the information cannot be readily extrapolated to complex mineral assemblages in natural systems. Recent studies have elucidated the role of less abundant mineral and organic substrates as important surface chemical modifiers and have demonstrated complex coupling of reactivity between permanent-charge phyllosilicates and variable-charge Fe-oxohydroxide phases. Surface chemical modifiers were observed to control colloid generation and transport processes in surface and subsurface environments as well as the transport of solutes and ionic tracers. The surface charging mechanisms operative in the complex mineral assemblages cannot be predicted based on bulk mineralogy or by considering surface reactivity of less abundant mineral phases based on results from model systems. The fragile nature of mineral assemblages isolated from natural systems requires novel techniques and experimental approaches for investigating their surface chemistry and reactivity free of artifacts. A complete understanding of the surface chemistry of complex mineral assemblages is prerequisite to accurately assessing environmental and human health risks of contaminants or in designing environmentally sound, cost-effective chemical and biological remediation strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"March 1999."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copper oxide supported on nanoporous activated carbon (CuO-NPAC) is reported for the aqueous phase catalytic degradation of cyanotoxin microcystin-LR (MC-LR). The loading and spatial distribution of CuO throughout the NPAC matrix strongly influence the catalytic efficiency. CuO-NPAC synthesis was optimized with respect to the copper loading and thermal processing, and the physicochemical properties of the resulting materials were characterized by XRD, BET, TEM, SEM, EPR, TGA, XPS and FT-IR spectroscopy. EPR spin trapping and fluorescence spectroscopy showed in situ ˙OH formation via H2O2 over CuO-NPAC as the catalytically relevant oxidant. The impact of reaction conditions, notably CuO-NPAC loading, H2O2 concentration and solution pH, is discussed in relation to the reaction kinetics for MC-LR remediation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Micro-nano bubbles (MNBs) are tiny bubbles with diameters on the order of micrometers and nanometers, showing great potential in environmental remediation. However, the application is only in the beginning stages and remains to be intensively studied. In order to explore the possible use of MNBs in groundwater contaminant removal, this study focuses on the transport of MNBs in porous media and dissolution processes. The bubble diameter distribution was obtained under different conditions by a laser particle analyzer. The permeability of MNB water through sand was compared with that of air-free water. Moreover, the mass transfer features of dissolved oxygen in water with MNBs were studied. The results show that the bubble diameter distribution is influenced by the surfactant concentration in the water. The existence of MNBs in pore water has no impact on the hydraulic conductivity of sand. Furthermore, the dissolved oxygen (DO) in water is greatly increased by the MNBs, which will predictably improve the aerobic bioremediation of groundwater. The results are meaningful and instructive in the further study of MNB research and applications in groundwater bioremediation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Contaminated land remediation has traditionally been viewed as sustainable practice because it reduces urban sprawl and mitigates risks to human being and the environment. However, in an emerging green and sustainable remediation (GSR) movement, remediation practitioners have increasingly recognized that remediation operations have their own environmental footprint. The GSR calls for sustainable behaviour in the remediation industry, for which a series of white papers and guidance documents have been published by various government agencies and professional organizations. However, the relationship between the adoption of such sustainable behaviour and its underlying driving forces has not been studied. This study aims to contribute to sustainability science by rendering a better understanding of what drives organizational behaviour in adopting sustainable practices. Factor analysis (FA) and structural equation modelling (SEM) were used to investigate the relationship between sustainable practices and key factors driving these behaviour changes in the remediation field. A conceptual model on sustainability in the environmental remediation industry was developed on the basis of stakeholder and institutional theories. The FA classified sustainability considerations, institutional promoting and impeding forces, and stakeholder's influence. Subsequently the SEM showed that institutional promoting forces had significant positive effects on adopting sustainability measures, and institutional impeding forces had significant negative effects. Stakeholder influences were found to have only marginal direct effect on the adoption of sustainability; however, they exert significant influence on institutional promoting forces, thus rendering high total effect (i.e. direct effect plus indirect effect) on the adoption of sustainability. This study suggests that sustainable remediation represents an advanced sustainable practice, which may only be fully endorsed by both internal and external stakeholders after its regulatory, normative and cognitive components are institutionalized. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Land is not only a critical component of the earth's life support system, but also a precious resource and an important factor of production in economic systems. However, historical industrial operations have resulted in large areas of contaminated land that are only slowly being remediated. In recent years, sustainability has drawn increasing attention in the environmental remediation field. In Europe, there has been a movement towards sustainable land management; and in the US, there is an urge for green remediation. Based on a questionnaire survey and a review of existing theories and empirical evidence, this paper suggests the expanding emphasis on sustainable remediation is driven by three general factors: (1) increased recognition of secondary environmental impacts (e.g., life-cycle greenhouse gas emissions, air pollution, energy consumption, and waste production) from remediation operations, (2) stakeholders' demand for economically sustainable brownfield remediation and "green" practices, and (3) institutional pressures (e.g., social norm and public policy) that promote sustainable practices (e.g., renewable energy, green building, and waste recycling). This paper further argues that the rise of the "sustainable remediation" concept represents a critical intervention point from where the remediation field will be reshaped and new norms and standards will be established for practitioners to follow in future years. This paper presents a holistic view of sustainability considerations in remediation, and an integrated framework for sustainability assessment and decision making. The paper concludes that "sustainability" is becoming a new imperative in the environmental remediation field, with important implications for regulators, liability owners, consultants, contractors, and technology vendors. © 2014 Elsevier Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work reviews the use of micron sized bubbles made from aqueous surfactant solution in environmental remediation. This is a novel technique and offers a low cost treatment option.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Zero-valent iron nanoparticles (nZVIs) are often used in environmental remediation. Their high surface area that is associated with their high reactivity makes them an excellent agent capable of transforming/degrading contaminants in soils and waters. Due to the recent development of green methods for the production of nZVIs, the use of this material became even more attractive. However, the knowledge of its capacity to degrade distinct types of contaminants is still scarce. The present work describes the study of the application of green nZVIs to the remediation of soils contaminated with a common anti-inflammatory drug, ibuprofen. The main objectives of this work were to produce nZVIs using extracts of grape marc, black tea and vine leaves, to verify the degradation of ibuprofen in aqueous solutions by the nZVIs, to study the remediation process of a sandy soil contaminated with ibuprofen using the nZVIs, and to compare the experiments with other common chemical oxidants. The produced nZVIs had nanometric sizes and were able to degrade ibuprofen (54 to 66% of the initial amount) in aqueous solutions. Similar remediation efficiencies were obtained in sandy soils. In this case the remediation could be enhanced (achieving degradation efficiencies above 95%) through the complementation of the process with a catalyzed nZVI Fenton-like reaction. These results indicate that this remediation technology represents a good alternative to traditional and more aggressive technologies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The industrial activity is inevitably associated with a certain degradation of the environmental quality, because is not possible to guarantee that a manufacturing process can be totally innocuous. The eco-efficiency concept is globally accepted as a philosophy of entreprise management, that encourages the companies to become more competitive, innovative and environmentally responsible by promoting the link between its companies objectives for excellence and its objectives of environmental excellence issues. This link imposes the creation of an organizational methodology where the performance of the company is concordant with the sustainable development. The main propose of this project is to apply the concept of eco-efficiency to the particular case of the metallurgical and metal workshop industries through the development of the particular indicators needed and to produce a manual of procedures for implementation of the accurate solution.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The nearshore marine ecosystem is a dynamic environment impacted by many activities, especially the coastal waters and sediments contiguous to major urban areas. Although heavy metals are natural constituents of the marine environment, inputs are considered to be conservative pollutants and are potentially toxic, accumulate in the sediment, are bioconcentrated by organisms and may cause health problems to humans via the food chain. A variety of metals in trace amounts are essential for biological processes in all organisms, but excessive levels can be detrimental by acting as enzyme inhibitors. Discharge of industrial wastewater, agriculture runoff and untreated sewage pose a particularly serious threat to the coastal environment of Kerala, but there is a dearth of studies in documenting the contaminant metals. This study aimed principally to assess such contamination by examining the results of heavy metal (Cu, Pb, Cr, Ni, Zn, Cd and Hg) analysis in seawater, sediment and benthic biota from a survey of five transects along the central and northern coast of Kerala in 2008 covering a 10.0 km stretch of near shore environment in each transect. Trophic transfer of metal contaminants from aquatic invertebrates to its predators was also assessed, by employing a suitable benthic food chain model in order to understand which all metals are undergoing biotransference (transfer of metals from a food source to consumer).The study of present contamination levels will be useful for potential environmental remediation and ecosystem restoration at contaminated sites and provides a scientific basis for standards and protective measures for the coastal waters and sediments. The usefulness of biomonitor proposed in this study would allow identification of different bioavailable metals as well as provide an assessment of the magnitude of metal contamination in the coastal marine milieu. The increments in concentration of certain metals between the predator and prey discerned through benthic food chain can be interpreted as evidence of biotransference.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This dissertation examines the global technological and environmental history of copper smelting and the conflict that developed between historic preservation and environmental remediation at major copper smelting sites in the United States after their productive periods ended. Part I of the dissertation is a synthetic overview of the history of copper smelting and its environmental impact. After reviewing the basic metallurgy of copper ores, the dissertation contains successive chapters on the history of copper smelting to 1640, culminating in the so-called German, or Continental, processing system; on the emergence of the rival Welsh system during the British industrial revolution; and on the growth of American dominance in copper production the late 19th and early 20th centuries. The latter chapter focuses, in particular, on three of the most important early American copper districts: Michigan’s Keweenaw Peninsula, Tennessee’s Copper Basin, and Butte-Anaconda, Montana. As these three districts went into decline and ultimately out of production, they left a rich industrial heritage and significant waste and pollution problems generated by increasingly more sophisticated technologies capable of commercially processing steadily growing volumes of decreasingly rich ores. Part II of the dissertation looks at the conflict between historic preservation and environmental remediation that emerged locally and nationally in copper districts as they went into decline and eventually ceased production. Locally, former copper mining communities often split between those who wished to commemorate a region’s past importance and develop heritage tourism, and local developers who wished to clear up and clean out old industrial sites for other purposes. Nationally, Congress passed laws in the 1960s and 1970s mandating the preservation of historical resources (National Historic Preservation Act) and laws mandating the cleanup of contaminated landscapes (CERCLA, or Superfund), objectives sometimes in conflict – especially in the case of copper smelting sites. The dissertation devotes individual chapters to the conflicts that developed between environmental remediation, particularly involving the Environmental Protection Agency and the heritage movement in the Tennessee, Montana, and Michigan copper districts. A concluding chapter provides a broad model to illustrate the relationship between industrial decline, federal environmental remediation activities, and the growth of heritage consciousness in former copper mining and smelting areas, analyzes why the outcome varied in the three areas, and suggests methods for dealing with heritage-remediation issues to minimize conflict and maximize heritage preservation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Zero valent iron nanoparticles (nZVI) represent a promising agent for environmental remediation. Nevertheless, their application presents some limitations regarding their rapid oxidation and aggregation in the media. The aim of this study was to determine the effect that nZVI aging has in heavy metal remediation in water. Contaminants studied were Zn, Cd, Ni, Cu and Cr, which are typical elements found in ground and wastewater. Results show a high contaminant removal capacity by the nZVI in the first 2 h of reaction. Nevertheless, for longer reaction times, some of the metal ions that had already been adsorbed in the nZVI were delivered to the water. Cd and Ni show the maximum delivery percentages (65 and 27% respectively after 21 days of contact time). The starting delivery time was shortened when applying lower nZVI amounts. No re-dissolution of Cr was observed in any circumstance because it was the only element incorporated into the nanoparticles core, as TEM images showed. Contaminant release from nZVI is probably due to nanoparticles oxidation caused by aging, which produced a pH decrease and nZVI surface crystallization.